Vol. 82

Latest Volume
All Volumes
All Issues
2018-02-25

First Principles Model of Electric Cable Braid Penetration with Dielectrics

By Salvatore Campione, Larry Kevin Warne, William L. Langston, and Lorena I. Basilio
Progress In Electromagnetics Research C, Vol. 82, 1-11, 2018
doi:10.2528/PIERC17103010

Abstract

In this paper, we report the formulation to account for dielectrics in a first principles multipole-based cable braid electromagnetic penetration model. To validate our first principles model, we consider a one-dimensional array of wires, which can be modeled analytically with a multipole-conformal mapping expansion for the wire charges; however, the first principles model can be readily applied to realistic cable geometries. We compare the elastance (i.e. the inverse of the capacitance) results from the first principles cable braid electromagnetic penetration model to those obtained using the analytical model. The results are found in good agreement up to a radius to half spacing ratio of 0.5-0.6, depending on the permittivity of the dielectric used, within the characteristics of many commercial cables. We observe that for typical relative permittivities encountered in braided cables, the transfer elastance values are essentially the same as those of free space; the self-elastance values are also approximated by the free space solution as long as the dielectric discontinuity is taken into account for the planar mode.

Citation


Salvatore Campione, Larry Kevin Warne, William L. Langston, and Lorena I. Basilio, "First Principles Model of Electric Cable Braid Penetration with Dielectrics," Progress In Electromagnetics Research C, Vol. 82, 1-11, 2018.
doi:10.2528/PIERC17103010
http://test.jpier.org/PIERC/pier.php?paper=17103010

References


    1. Vance, E. F., Coupling to Shielded Cables, R. E. Krieger, 1987.

    2. Celozzi, S., R. Araneo, and G. Lovat, Electromagnetic Shielding, John Wiley and Sons, 2008.
    doi:10.1002/9780470268483

    3. Lee, K. S. H., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere Publishing Corp., Washington, 1986.

    4. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, Inc., New York, 1997.

    5. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, "Cable braid electromagnetic penetration model," Sandia National Laboratories Report, SAND2015-5019, Albuquerque, NM, 2015.

    6. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, "First principles cable braid electromagnetic penetration model," Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016.
    doi:10.2528/PIERB15121806

    7. Campione, S., S., L. I. Basilio, L. K. Warne, H. G. Hudson, and W. L. Langston, "Shielding effectiveness of multiple-shield cables with arbitrary terminations via transmission line analysis," Progress In Electromagnetics Research C, Vol. 65, 93-102, 2016.
    doi:10.2528/PIERC16032403

    8. Demoulin, B., P. Degauque, M. Cauterman, and R. Gabillard, "Shielding performance of triply shielded coaxial cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 22, 173-180, 1980.
    doi:10.1109/TEMC.1980.303877

    9. Lee, K. S. H. and C. F. Baum, "Application of modal analysis to braided-shield cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 17, 159-169, 1975.
    doi:10.1109/TEMC.1975.303403

    10. Johnson, W. A., L. K. Warne, L. I. Basilio, R. S. Coats, J. D. Kotulski, and R. E. Jorgenson, "Modeling of braided shields," Proceedings of Joint 9th International Conference on Electromagnetics in Advanced Applications ICEAA 2005 and 11th European Electromagnetic Structures Conference EESE, 881-884, 2orino, Italy, 2005.

    11. Campione, S., L. K. Warne, W. L. Langston, W. A. Johnson, R. S. Coats, and L. I. Basilio, "Multipole-based cable braid electromagnetic penetration model: Electric penetration case," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, 444-452, 2018.
    doi:10.1109/TEMC.2017.2721101

    12. Kley, T., "Optimized single-braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, 1-9, 1993.
    doi:10.1109/15.249390

    13. Takashima, T. and R. Ishibashi, "Electric fields in dielectric multi-layers calculated by digital computer," IEEE Transactions on Electrical Insulation, Vol. 13, 37-44, 1978.
    doi:10.1109/TEI.1978.298097

    14. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd Ed., Pergamon Press, 1984.

    15. Langmuir, R. V., Electromagnetic Fields and Waves, McGraw Hill, 1961.

    16. Larsen, T., "A Survey of the theory of wire grids," IRE Transactions on Microwave Theory and Techniques, Vol. 10, 191-201, 1962.
    doi:10.1109/TMTT.1962.1125490

    17. Casey, K. F., "Electromagnetic shielding behavior of wire-mesh screens," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, 298-306, 1988.
    doi:10.1109/15.3309

    18. Smythe, W. R., Static and Dynamic Electricity, Hemisphere Publishing Corp., New York, 1989.

    19. Schelkunoff, S. A., Electromagnetic Waves, D. Van Nostrand Company, Inc., New York, NY, 1943.

    20. Ramo, S., J. R. Whinnery, and R. V. Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, Inc., New York, NY, 1965.

    21. Warne, L. K., W. L. Langston, and S. Campione, "Approximations to wire grid elastance," Sandia National Laboratories Report, SAND2016-6180, Albuquerque, NM, 2016.

    22. Campione, S., L. K. Warne, L. I. Basilio, C. D. Turner, K. L. Cartwright, and K. C. Chen, "Electromagnetic pulse excitation of finite- and infinitely-long lossy conductors over a lossy ground plane," Journal of Electromagnetic Waves and Applications, Vol. 31, 209-224, 2017.
    doi:10.1080/09205071.2016.1270776