Vol. 82

Latest Volume
All Volumes
All Issues
2018-03-13

Drastic Improvement of Change Detection Results with Multilook Complex SAR Images Approach

By Azzedine Bouaraba, Aichouche Belhadj-Aissa, and Damien Closson
Progress In Electromagnetics Research C, Vol. 82, 55-66, 2018
doi:10.2528/PIERC17112701

Abstract

Coherent Change Detection (CCD) is a powerful technique that uses Synthetic Aperture Radar (SAR) coherence to measure subtle ground changes in the imaged area. Unfortunately, the coherence estimator is biased for low coherence values, resulting in a highly degraded change detection performance. The spatial multilooking technique is typically used to improve coherence estimation but at the expense of spatial resolution. Actually, there are few SAR satellites that are able to deliver Multiple Look Complex (MLC) SAR images, which provide noticeable coherence bias reduction. In the present work, we investigate detection performance improvement that can be obtained through the use of MLC SAR images. The detection probability and false alarm are evaluated using experimental very high-resolution SAR data. After SAR image focusing and coherence estimation, the results indicate that the use of MLC SAR images with four looks allows for nearly 60% higher detection probability in the case of a low false alarm rate.

Citation


Azzedine Bouaraba, Aichouche Belhadj-Aissa, and Damien Closson, "Drastic Improvement of Change Detection Results with Multilook Complex SAR Images Approach," Progress In Electromagnetics Research C, Vol. 82, 55-66, 2018.
doi:10.2528/PIERC17112701
http://test.jpier.org/PIERC/pier.php?paper=17112701

References


    1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar, Systems and Signal Processing, John Wiley & Sons, NY, 1991.

    2. Massonnet, D. and J. C. Souyris, Imaging with Synthetic Aperture Radar, EPFL Press, 2008.
    doi:10.1201/9781439808139

    3. Zebker, H. A. and R. M. Goldstein, "Topographic mapping from interferometric synthetic aperture radar observations," J. Geophysics Research, Vol. 9, No. 5, 4993-4999, 1986.
    doi:10.1029/JB091iB05p04993

    4. Massonnet, D. and K. L. Feigl, "Radar interferometry and its applications to changes in the Earth’s surface," Review of Geophysics, Vol. 36, 441-500, 1998.
    doi:10.1029/97RG03139

    5. Preiss, M., D. A. Gray, and N. J. S. Stacy, "Detecting scene changes using synthetic aperture radar interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 8, 2041-2054, 2005.
    doi:10.1109/TGRS.2006.872910

    6. Fan, C., X.-T. Huang, T. Jin, J.-G. Yang, and D. X. An, "Novel pre-processing techniques for coherence improving in along-track dual-channel low frequency SAR," Progress In Electromagnetics Research, Vol. 128, 171-193, 2012.
    doi:10.2528/PIER12011502

    7. Jungkyo, J., et al., "Damage-mapping algorithm based on coherence model using multitemporal polarimetric interferometric SAR data," IEEE Transactions on Geoscience and Remote Sensing, 2017, DOI: 10.1109/TGRS.2017.2764748.

    8. Touzi, R., A. Lopes, J. Bruniquel, and P. W. Vachon, "Coherence estimation for SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 1, 135-149, 1999.
    doi:10.1109/36.739146

    9. Martinez, C. L., "Coherence estimation in synthetic aperture radar data based on speckle noise modeling," Applied Optics, Vol. 46, No. 4, 544-558, 2007.
    doi:10.1364/AO.46.000544

    10. Bouaraba, A., D. Borghys, A. Belhadj-Aissa, M. Acheroy, and D. Closson, "Improving CCD performance by the use of local fringe frequencies," Progress In Electromagnetics Research C, Vol. 32, 123-137, 2012.
    doi:10.2528/PIERC12070305

    11. Bouaraba, A., et al., "InSAR phase filtering via joint subspace projection method: Application in change detection," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 10, 1817-1820, 2014.
    doi:10.1109/LGRS.2014.2310493

    12. Bouaraba, A., et al., "man-made change detection using high resolution Cosmo-SkyMed SAR interferometry," Arabian Journal for Science and Engineering, Vol. 41, No. 1, 201-208, 2016.
    doi:10.1007/s13369-015-1736-4

    13. Wahl, D. E., D. A. Yocky, C. V. Jakowatz, and K. M. Simonson, "A new maximum-likelihood change estimator for two-pass SAR coherent change detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 4, 2460-2469, 2016.
    doi:10.1109/TGRS.2015.2502219

    14. Karsten, S. and H. Andrew, "InSAR processing for volcano monitoring and other near-real time applications," Journal of Geophysical Research: Solid Earth, Vol. 121, No. 4, 2947-2960, 2016.
    doi:10.1002/2015JB012752

    15. Cumming, I. G., et al., "Interpretations of the Omega-K algorithm and comparisons with other algorithms," IEEE Geoscience and Remote Sensing Symposium Proceedings, 1455-1458, 2003.

    16. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw-Hill, New York, 2005.