Vol. 82

Latest Volume
All Volumes
All Issues
2018-03-11

Modelling and Simulation of P-I-n Quantum Dot Semiconductor Saturable Absorber Mirrors

By Ahmed E. Abouelez, Essam Eldiwany, Mohamed Bakry El Mashade, and Hussien A. Konber
Progress In Electromagnetics Research C, Vol. 82, 39-53, 2018
doi:10.2528/PIERC17112804

Abstract

Semiconductor saturable absorber mirror (SESAM) based on InAs quantum dot (QD) material is important in designing fast mode-locked laser devices. A self-consistent time-domain travelling-wave (TDTW) model for the simulation of self-assembled QD-SESAM is developed. The 1-D TDTW model takes into consideration the time-varying QD optical susceptibility, refractive index variation resulting from the intersubband free-carrier absorption, homogeneous and inhomogeneous broadening. The carrier concentration rate equations are considered simultaneously with the travelling wave model. The model is used to analyze the characteristics of 1.3-μm p-i-n QD InAs-GaAs SESAM. The field distribution resulting from the TDTW equations, in both the SESAM absorbing region and the distributed Bragg reflectors, is obtained and used in finding the device characteristics including the modulation depth and recovery dynamics. These characteristics are studied considering the effects of QD surface density, inhomogeneous broadening, the number of QD absorbing layers, and the applied reverse voltage. The obtained results, based on the assumed device parameters, are in good agreement, qualitatively, with the experimental results.

Citation


Ahmed E. Abouelez, Essam Eldiwany, Mohamed Bakry El Mashade, and Hussien A. Konber, "Modelling and Simulation of P-I-n Quantum Dot Semiconductor Saturable Absorber Mirrors," Progress In Electromagnetics Research C, Vol. 82, 39-53, 2018.
doi:10.2528/PIERC17112804
http://test.jpier.org/PIERC/pier.php?paper=17112804

References


    1. Bellancourt, A. R., B. Rudin, D. J. H. C. Maas, M. Golling, H. J. Unold, T. Sudmeyer, and U. Keller, "First demonstration of a Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL)," 2007 Conference on Lasers and Electro-Optics (CLEO), 2007.

    2. Haiml, M., R. Grange, and U. Keller, "Optical characterization of semiconductor saturable absorbers," Applied Physics B: Lasers and Optics, Vol. 79, No. 3, 331-339, 2004.
    doi:10.1007/s00340-004-1535-1

    3. Keller, U., "Semiconductor nonlinearities for solid-state laser modelocking and Q-switching," Nonlinear Optics in Semiconductors II. Semiconductor and Semimetals, E. Garmire, A. Kost (eds.), Vol 59, 211-286, Academic Press, San Diego, CA, 1998.

    4. Malins, D. B., A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, "Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm," Applied Physics Letters, Vol. 89, No. 17, 171111, 2006.
    doi:10.1063/1.2369818

    5. Zolotovskaya, S. A., M. Butkus, R. H¨aring, A. Able, W. Kaenders, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, "p-i-n junction quantum dot saturable absorber mirror: Electrical control of ultrafast dynamics," Optics Express, Vol. 20, No. 8, 9038-9045, Mar. 2012.
    doi:10.1364/OE.20.009038

    6. Maas, D. J. H. C., A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Sudmeyer, and U. Keller, "Growth parameter optimization for fast quantum dot SESAMs," Optics Express, Vol. 16, No. 23, 18646-18656, 2008.
    doi:10.1364/OE.16.018646

    7. Yu, S. F., "Dynamic behavior of vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 32, No. 7, 1168-1179, 1996.
    doi:10.1109/3.517017

    8. Yu, S. F., "An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 34, No. 10, 1938-1948, 1998.
    doi:10.1109/3.720230

    9. Rossetti, M., P. Bardella, and I. Montrosset, "Time-domain travelling-wave model for quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 47, No. 2, 139-150, 2011.
    doi:10.1109/JQE.2010.2055550

    10. Gioannini, M. and M. Rossetti, "Time-domain traveling wave model of quantum dot DFB lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 5, 1318-1326, 2011.
    doi:10.1109/JSTQE.2011.2128857

    11. Abouelez, A. E., E. Eldiwany, M. B. El Mashade, and H. A. Konber, "Time-domain travelling-wave model for quantum dot based vertical cavity laser devices," Progress In Electromagnetics Research M, Vol. 65, 29-42, 2018.
    doi:10.2528/PIERM17112103

    12. Lagatsky, A. A., E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, "Quantum-dot-based saturable absorber with pn junction for mode-locking of solid-state lasers," IEEE Photonics Technology Letters, Vol. 17, No. 2, 294-296, 2005.
    doi:10.1109/LPT.2004.839387

    13. Michalzik, R., "Simple understanding of waveguiding in oxidized VCSELs," Annu. Rep. 1, 19-23, Dept. Optoelectron., Univ. Ulm, Ulm, Germany, 1995.

    14. Piskorski, L., M. Wasiak, R. Sarzala, and W. Nakwaski, "Structure optimisation of modern GaAs-based InGaAs/GaAs quantum-dot VCSELs for optical fibre communication," Opto-Electronics Review, Vol. 17, No. 3, 217-224, Jan. 2009.
    doi:10.2478/s11772-008-0067-3

    15. Mulet, J. and S. Balle, "Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 41, No. 9, 1148-1156, 2005.
    doi:10.1109/JQE.2005.853355

    16. Yu, S. F., Analysis and Design of Vertical Cavity Surface Emitting Lasers, John Wiley & Sons, 2003.
    doi:10.1002/0471723789

    17. Sugawara, M., Self-assembled InGaAs/GaAs Quantum Dots: Semiconductors and Semimetals, Vol. 60, Academic Press, San Diego, CA, 1999.

    18. Kim, J., C. Meuer, D. Bimberg, and G. Eisenstein, "Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 11, 1670-1680, 2010.
    doi:10.1109/JQE.2010.2058793

    19. Tong, C., S. Yoon, C. Ngo, C. Liu, and W. Loke, "Rate equations for 1.3-μm dots-under-a-well and dots-in-a-well self-assembled InAs-GaAs quantum-dot lasers," IEEE Journal of Quantum Electronics, Vol. 42, No. 11, 1175-1183, 2006.
    doi:10.1109/JQE.2006.883471

    20. Agrawal, G. P. and N. K. Dutta, Semiconductor Lasers, 2nd Ed., Van Nostrand, New York, 1993.

    21. Xu, T., M. Rossetti, P. Bardella, and I. Montrosset, "Simulation and analysis of dynamic regimes involving ground and excited state transitions in quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 48, No. 9, 1193-1202, 2012.
    doi:10.1109/JQE.2012.2206372

    22. Berg, T. W. and J. Mørk, "Quantum dot amplifiers with high output power and low noise," Applied Physics Letters, Vol. 82, No. 18, 3083-3085, May 2003.
    doi:10.1063/1.1571226