Vol. 82

Latest Volume
All Volumes
All Issues
2018-03-13

Structural and Magnetic Studies of Fe100-X Cox Nanotubes Obtained by Template Method

By Kayrat Kamalovich Kadyrzhanov, Vyacheslav Serafimovich Rusakov, Artem Leonidovich Kozlovskiy, Maxim Vladimirovich Zdorovets, Egor Yur'evich Kaniukov, Alena Euhenauna Shumskaya, Inesh Ergazievna Kenzhina, and Maxim Sergeevich Fadeev
Progress In Electromagnetics Research C, Vol. 82, 77-88, 2018
doi:10.2528/PIERC17120501

Abstract

Hollow nanostructures based on the Fe100-xCox alloy were synthesized in the pores of polymer template matrices based on PET using the electrochemical deposition method. Morphology, elemental composition, and structural features were characterized by scanning electron microscopy, energy dispersive analysis, and X-ray diffractometry. The study of the internal magnetic texture was carried out using Mossbauer spectroscopy. The dependence of the change in structural and magnetic properties from the atomic content of components in nanotube structure is revealed. It is established that the synthesized nanostructures are hollow Fe100-xCox nanotubes with a body-centered cubic crystal structure. The decrease in the unit cell parameter with increasing cobalt concentration is due to the difference in the radii of Fe (1.227 Å) and Co (1.191 Å) atoms. It is established that a random distribution of magnetic moments directions of Fe atoms is observed for Fe100Co0 nanotubes. And magnetic texture along the nanotube axis is observed for Fe100-xCox nanotubes, with an increase in Co atoms concentration. The average angle between the direction of the magnetic moment of iron atoms and the nanotube axis decreases from ϑ = 54.6˚ to ϑ = 24.5˚.

Citation


Kayrat Kamalovich Kadyrzhanov, Vyacheslav Serafimovich Rusakov, Artem Leonidovich Kozlovskiy, Maxim Vladimirovich Zdorovets, Egor Yur'evich Kaniukov, Alena Euhenauna Shumskaya, Inesh Ergazievna Kenzhina, and Maxim Sergeevich Fadeev, "Structural and Magnetic Studies of Fe100-X Cox Nanotubes Obtained by Template Method," Progress In Electromagnetics Research C, Vol. 82, 77-88, 2018.
doi:10.2528/PIERC17120501
http://test.jpier.org/PIERC/pier.php?paper=17120501

References


    1. Ohgai, T., X. Ho®er, A. Fabian, L. Gravier, and J.-P. Ansermet, "Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium," Journal of Materials Chemistry, Vol. 13, No. 10, 2530, 2003.
    doi:10.1039/B306581B

    2. Cristea, C., M. Tertis, and R. Galatus, "Magnetic nanoparticles for antibiotics detection," Nanomaterials, Vol. 7, No. 6, 119, 2017.
    doi:10.3390/nano7060119

    3. Wang, P., M. Du, M. Zhang, H. Zhu, S. Bao, M. Zou, and T. Yang, "Facile fabrication of AuNPs/PANI/HNTs nanostructures for high-performance electrochemical sensors towards hydrogen peroxide," Chemical Engineering Journal, Vol. 248, 307-314, 2014.
    doi:10.1016/j.cej.2014.03.044

    4. Li, C., X. Li, X. Duan, G. Li, and J. Wang, "Halloysite nanotube supported Ag nanoparticles het-eroarchitectures as catalysts for polymerization of alkylsilanes to superhydrophobic silanol/siloxane composite microspheres," Journal of Colloid and Interface Science, Vol. 436, 70-76, 2014.
    doi:10.1016/j.jcis.2014.08.051

    5. Denisova, E., L. Chekanova, R. Iskhakov, S. Komogortsev, I. Nemtsev, D. Velikanov, and S. Melnikova, "Magnetic anisotropy of co-nanostructures embedded in matrices with different pores size and morphology," Solid State Phenomena. Trans. Tech. Publications, Vol. 233, 583-586, 2015.
    doi:10.4028/www.scientific.net/SSP.233-234.583

    6. Graham, L. M., S. Cho, S. K. Kim, M. Nokeda, and S. B. Lee, "Role of boric acid in nickel nanotube electrodeposition: A surface-directed growth mechanism," Chemical Communications, Vol. 50, No. 5, 527-529, 2014.
    doi:10.1039/C3CC47183G

    7. Liao, S. H., K. L. Chen, C. M. Wang, J. J. Chieh, H. E. Horng, L. M. Wang, C. H. Wu, and H. C. Yang, "Using bio-functionalized magnetic nanoparticles and dynamic nuclear magnetic resonance to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection," Sensors, Vol. 14, No. 11, 21409-21417, 2014.
    doi:10.3390/s141121409

    8. Yen, S. K., P. Padmanabhan, and S. T. Selvan, "Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery," Theranostics, Vol. 3, No. 12, 986, 2013.
    doi:10.7150/thno.4827

    9. Dragos, O., H. Chiriaca, N. Lupua, M. Grigorasa, and I. Tabakovic, "Anomalous codeposition of fcc NiFe nanowires with 5{55% Fe and their morphology, crystal structure and magnetic properties," Journal of The Electrochemical Society, Vol. 163, No. 3, D83-D94, 2016.
    doi:10.1149/2.0771603jes

    10. Frolov, K. V., D. L. ZagorskiiI, S. Lyubutin, M. A. Chuev, I. V. Perunov, S. A. Bedin, A. A. Lomov, V. V. Artemov, and S. N. Sulyanov, "Magnetic and structural properties of Fe-Co nanowires fabricated by matrix synthesis in the pores of track membranes," JETP Letters, Vol. 105, No. 5, 319-326, 2017.
    doi:10.1134/S0021364017050083

    11. Evans, P. R. and Y. G. Schwarzacher, "Current perpendicular to plane giant magnetoresistance of multilayered nanowires electrodeposited in anodic aluminum oxide membranes," Applied Physics Letters, Vol. 76, No. 4, 481-483, 2000.
    doi:10.1063/1.125794

    12. Qin, J., J. Nogues, M. Mikhaylova, A. Roig, J. S. Munoz, and M. Muhammed, "Differences in the magnetic properties of Co, Fe, and Ni 250-300 nm wide nanowires electrodeposited in amorphous anodized alumina templates," Chemistry of Materials, Vol. 17, No. 7, 1829-1834, 2005.
    doi:10.1021/cm047870q

    13. Guo, P., X. Chen, W. Guan, H. Cheng, and H. Jiang, "Effect of tensile stress on the variation of magnetic field of low-alloy steel," Journal of Magnetism and Magnetic Materials, Vol. 323, No. 20, 2474-2477, 2011.
    doi:10.1016/j.jmmm.2011.05.015

    14. Vivas, L. G., Y. P. Ivanov, D. G. Trabada, M. P. Proenca, O. Chubykalo-Fesenko, and M. Vazquez, "Magnetic properties of Co nanopillar arrays prepared from alumina templates," Nanotechnology, Vol. 24, No. 10, 105703, 2013.
    doi:10.1088/0957-4484/24/10/105703

    15. Peppas, N. A., J. Z. Hilt, A. Khademhosseini, and R. Langer, "Hydrogels in biology and medicine: From molecular principles to bionanotechnology," Advanced materials, Vol. 18, No. 11, 1345-1360, 2006.
    doi:10.1002/adma.200501612

    16. Ripamonti, C. I., D. Santini, E. Maranzano, M. Berti, and F. Roila, "Management of cancer pain: ESMO clinical practice guidelines," Annals of Oncology, Vol. 23, No. 7, vii139-vii154, 2012.

    17. Zhang, L., T. Petit, K. E. Peyer, and B. J. Nelson, "Targeted cargo delivery using a rotating nickel nanowire," Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 8, No. 7, 1074-1080, 2012.
    doi:10.1016/j.nano.2012.03.002

    18. Zdorovets, M., I. Ivanov, M. Koloberdin, S. Kozin, V. Alexandrenko, E. Sambaev, and A. Kurakhmedov, "Accelerator complex based on DC-60 cyclotron," Proc. 24th Russian Particle Accelerator Conf., 287-289, 2014.

    19. Kaniukov, E. Y., E. E. Shumskaya, D. V. Yakimchuk, A. L. Kozlovskiy, M. A. Ibragimova, and M. V. Zdorovets, "Evolution of the polyethylene terephthalate track membranes parameters at the etching process," J. Contemp. Phys., Vol. 52, 155-160, 2017.
    doi:10.3103/S1068337217020098

    20. Matsnev, M. E. and V. S. Rusakov, "SpectrRelax: An application for Mossbauer spectra modeling and fitting," AIP Conference Proceedings, AIP, Vol. 1489, No. 1, 178-185, 2012.
    doi:10.1063/1.4759488

    21. Shao, P., G. Ji, and P. Chen, "Gold nanotube membranes: Preparation, characterization and application for enantioseparation," Journal of Membrane Science, Vol. 255, No. 1, 1-11, 2005.

    22. Yu, T., Z. X. Shen, Y. Shi, and J. Ding, "Cation migration and magnetic ordering in spinel CoFe2O4 powder: Micro-Raman scattering study," Journal of Physics: Condensed Matter, Vol. 14, No. 37, L613, 2002.
    doi:10.1088/0953-8984/14/37/101

    23. Chen, Z., Q. Zhan, D. Xue, F. Li, X. Zhou, H. Kunkel, and G. Williams, "Mossbauer study of Fe-Co nanowires," Journal of Physics: Condensed Matter, Vol. 14, No. 3, 613, 2002.
    doi:10.1088/0953-8984/14/3/328

    24. Hunter, D., W. Osborn, K. Wang, N. Kazantseva, J. Hattrick-Simpers, R. Suchoski, R. Takahashi, M. L. Young, A. Mehta, L. A. Bendersky, S. E. Lofland, M. Wuttig, and I. Takeuchi, "Giant magnetostriction in annealed Co1-xFex thin-films," Nature Communications, Vol. 2, 518, 2011.
    doi:10.1038/ncomms1529

    25. Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, New York and Oxford, 1966.

    26. Harris, G. B., "Quantitative measurement of preferred orientation in rolled uranium bars," Dublin Philosophical Magazine and Journal of Science, Vol. 43, No. 336, 113, 1952.
    doi:10.1080/14786440108520972

    27. Ahmad, N., A. Saeeda, S. Khana, F. Hassana, W. J. Lib, S. A. Shahc, A. Majidd, and X. F. Hanb, "Investigation of easy axis transition and magnetodynamics in Ni76Fe24 nanowires and Ni77Fe23 nanotubes synthesized by DC electrodeposition," Journal of Alloys and Compounds, Vol. 725, 123e128, 2017.

    28. Irfan, M., U. Khan, W. Li, N. Adeela, K. Javed, and X. F. Hana, "Magnetic investigations of post-annealed metallic Fe nanowires via electrodeposition method," Materials Letters, Vol. 180, 235-238, 2016.
    doi:10.1016/j.matlet.2016.05.131

    29. Piraux, L., J. M. George, J. F. Despres, C. Leroy, E. Ferain, and R. Legras, "Giant magnetoresistance in magnetic multilayered nanowires," Applied Physics Letters, Vol. 65, No. 19, 2484-2486, 1994.
    doi:10.1063/1.112672