Vol. 97

Latest Volume
All Volumes
All Issues
2019-12-13

Wide Axial Ratio Bandwidth, High Gain, and Low Profile Cavity Backed Circularly Polarized Elliptical Array for Satellite Applications

By Alla M. Eid, Amgad A. Salama, and Hassan M. Elkamchouchi
Progress In Electromagnetics Research C, Vol. 97, 213-225, 2019
doi:10.2528/PIERC19100104

Abstract

In this paper, a novel wide axial ratio bandwidth (ARBW), high gain, and low profile left-hand circularly polarized [4×4] elliptical microstrip array suitable for Ku-band satellite TV reception applications is introduced. A careful study has been done to get the optimum design to be suited for these application requirements. A circularly polarized microstrip patch with two stubs opposite to each other to produce two orthogonal modes is presented. The proposed element has 1.49 GHz 10-dB return loss bandwidth (RLBW), 0.44 GHz 3-dB Axial-ratio band (ARBW), and 6.9 dBi gain. A novel substrate integrated waveguide (SIW) feeding structure is investigated. Using the advantage of the output ports phase response of the SIW feeding network, two structures have been investigated. First, a [2×2] circular array has been designed, and although it has reached a good RLBW, this structure dose not achieve the required ARBW for the above-mentioned application. Further, a compact [2×2] sequential feeding network is designed to widen the ARBW. The measurement shows a very good result with about 12 dBi gain, 14.8% RLBW, and 12% ARBW. Finally, a [4×4] duple sequential feeding array is designed to increase the gain of the antenna to about 19 dBi, with 13% RLBW and 20.7% ARBW. In addition to that, the final antenna profile is 0.0184λ.

Citation


Alla M. Eid, Amgad A. Salama, and Hassan M. Elkamchouchi, "Wide Axial Ratio Bandwidth, High Gain, and Low Profile Cavity Backed Circularly Polarized Elliptical Array for Satellite Applications," Progress In Electromagnetics Research C, Vol. 97, 213-225, 2019.
doi:10.2528/PIERC19100104
http://test.jpier.org/PIERC/pier.php?paper=19100104

References


    1. Gao, S. S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, John Wiley & Sons, 2013.

    2. Huang, J., W. Lin, F. Qiu, C. Jiang, D. Lei, and Y. J. Guo, "A low profile, ultra-lightweight, high efficient circularly-polarized antenna array for ku band satellite applications," IEEE Access, Vol. 5, 18356-18365, 2017.
    doi:10.1109/ACCESS.2017.2750318

    3. Alieldin, A., Y. Huang, M. Stanley, and S. Joseph, "A circularly polarized circular antenna array for satellite TV reception," 2018 15th European Radar Conference (EuRAD), 505-508, IEEE, 2018.
    doi:10.23919/EuRAD.2018.8546512

    4. Guntupalli, A. B. and K. Wu, "60-GHz circularly polarized antenna array made in low-cost fabrication process," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 864-867, 2014.
    doi:10.1109/LAWP.2014.2320906

    5. Li, Y., Z. N. Chen, X. Qing, Z. Zhang, J. Xu, and Z. Feng, "Axial ratio bandwidth enhancement of 60-GHz substrate integrated waveguide-fed circularly polarized LTCC antenna array," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 10, 4619-4626, 2012.
    doi:10.1109/TAP.2012.2207343

    6. Li, M. and K.-M. Luk, "Low-cost wideband microstrip antenna array for 60-GHz applications," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 3012-3018, 2014.
    doi:10.1109/TAP.2014.2311994

    7. Liu, C., Y.-X. Guo, X. Bao, and S.-Q. Xiao, "60-GHz LTCC integrated circularly polarized helical antenna array," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1329-1335, 2011.
    doi:10.1109/TAP.2011.2180351

    8. Sun, H., Y.-X. Guo, and Z. Wang, "60-GHz circularly polarized U-slot patch antenna array on LTCC," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 430-435, 2012.
    doi:10.1109/TAP.2012.2214018

    9. So, K. K. and C. H. Chan, "Circularly polarized patch antenna array for satellite communication in ku band," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, 2016.

    10. Ioannides, P. and C. A. Balanis, "Uniform circular and rectangular arrays for adaptive beamforming applications," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 351-354, 2005.
    doi:10.1109/LAWP.2005.857039

    11. Chang, F.-S., K.-L. Wong, and T.-W. Chiou, "Low-cost broadband circularly polarized patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 3006-3009, 2003.
    doi:10.1109/TAP.2003.818010

    12. Esselle, K. P., et al., "Wideband circularly polarized stacked microstrip antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 21-24, 2007.

    13. Guo, Y.-X. and D. C. H. Tan, "Wideband single-feed circularly polarized patch antenna with conical radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 924-926, 2009.

    14. Lin, C., F.-S. Zhang, Y.-C. Jiao, F. Zhang, and X. Xue, "A three-fed microstrip antenna for wideband circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 359-362, 2010.
    doi:10.1109/LAWP.2010.2048296

    15. Qing, X., "Broadband aperture-coupled circularly polarized microstrip antenna fed by a three-stub hybrid coupler," Microwave and Optical Technology Letters, Vol. 40, No. 1, 38-41, 2004.
    doi:10.1002/mop.11280

    16. Kilgus, C., "Shaped-conical radiation pattern performance of the backfire quadrifilar helix," IEEE Transactions on Antennas and Propagation, Vol. 23, No. 3, 392-397, 1975.
    doi:10.1109/TAP.1975.1141084

    17. Chen, Y.-Y. and K.-L. Wong, "Low-profile broadband printed quadrifilar helical antenna for broadcasting satellite application," Microwave and Optical Technology Letters, Vol. 36, No. 2, 134-136, 2003.
    doi:10.1002/mop.10698

    18. Keen, K., "Bandwidth dependence of resonant quadrifilar helix antennas," Electronics Letters, Vol. 46, No. 8, 550-552, 2010.
    doi:10.1049/el.2010.0372

    19. Pan, Y. and K. W. Leung, "Wideband circularly polarized trapezoidal dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 588-591, 2010.
    doi:10.1109/LAWP.2010.2053910

    20. Deng, S.-M. and C.-L. Tsai, "A broadband slot-coupled circularly polarized rectangular notch dielectric resonator antenna fed by a microstrip line," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 4, 246-249, IEEE, 2005.
    doi:10.1109/APS.2005.1552790

    21. Pan, Y. and K. W. Leung, "Wideband omnidirectional circularly polarized dielectric resonator antenna with parasitic strips," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2992-2997, 2012.
    doi:10.1109/TAP.2012.2194678

    22. Khalily, M., M. K. Rahim, and A. A. Kishk, "Planar wideband circularly polarized antenna design with rectangular ring dielectric resonator and parasitic printed loops," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 905-908, 2012.
    doi:10.1109/LAWP.2012.2211853

    23. Wong, K.-L., J.-Y. Wu, and C.-K. Wu, "A circularly polarized patch-loaded square-slot antenna," Microwave and Optical Technology Letters, Vol. 23, No. 6, 363-365, 1999.
    doi:10.1002/(SICI)1098-2760(19991220)23:6<363::AID-MOP13>3.0.CO;2-X

    24. Row, J.-S. and S.-W. Wu, "Circularly-polarized wide slot antenna loaded with a parasitic patch," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2826-2832, 2008.
    doi:10.1109/TAP.2008.928769

    25. Han, T.-Y., Y.-Y. Chu, L.-Y. Tseng, and J.-S. Row, "Unidirectional circularly-polarized slot antennas with broadband operation," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1777-1780, 2008.
    doi:10.1109/TAP.2008.923380

    26. Hwang, K., "Broadband circularly-polarised spidron fractal slot antenna," Electronics Letters, Vol. 45, No. 1, 3-4, 2009.
    doi:10.1049/el:20092876

    27. Cohn, S. B., "Characteristic impedance of the shielded-strip transmission lin," Transactions o the IRE Professional Group on Microwave Theory and Techniques, Vol. 2, No. 2, 52-57, 1954.
    doi:10.1109/TMTT.1954.1124875

    28. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Vol. 165. John Wiley & Sons, 2004.

    29. Nawaz, M. I., Z. Huiling, and M. Kashif, "Substrate Integrated Waveguide (SIW) to microstrip transition at X-band," Proceedings of the 2014 International Conference on Circuits, Systems and Control, 61-63, 2014.

    30. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, 2005.
    doi:10.1109/TMTT.2004.839303

    31. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

    32. Hall, P., "Application of sequential feeding to wide bandwidth, circularly polarised microstrip patch arrays," IEE Proceedings H (Microwaves, Antennas and Propagation), Vol. 136, 390-398, IET, 1989.
    doi:10.1049/ip-h-2.1989.0070

    33. Chen, A., Y. Zhang, Z. Chen, and C. Yang, "Development of a ka-band wideband circularly polarized 64-element microstrip antenna array with double application of the sequential rotation feeding technique," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1270-1273, 2011.
    doi:10.1109/LAWP.2011.2175433

    34. Li, Y. and K.-M. Luk, "A 60-GHz wideband circularly polarized aperture-coupled magneto-electric dipole antenna array," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1325-1333, 2016.
    doi:10.1109/TAP.2016.2537390