Vol. 132

Latest Volume
All Volumes
All Issues

A High Gain CPW Fed Metamaterial Antenna for UWB Applications

By Deepa Negi and Rajesh Khanna
Progress In Electromagnetics Research C, Vol. 132, 51-63, 2023


A multi-resonating coplanar waveguide (CPW) fed flexible antenna using metamaterial unit cell is designed for various UWB wireless communication systems. The designed unit cell has the total dimension of 14.8 mm × 14.8 mm × 0.25 mm. The top layer of the cell has a circular ring slot combined with four modified T shaped radiators giving metamaterial characteristics. The unit cell uses perfect boundary conditions along with y axis wave propagation, and it gives wide NRI region covering 2 to 16 GHz of frequency range. The overall gain of proposed CPW fed antenna is increased by using a 3 ×3 metamaterial array as reflector at the back of antenna. The metamaterial antenna has 2 to 16 GHz of total bandwidth and peak gain of 13.1 dB. Further the measured outcomes are in accordance with the simulated ones.


Deepa Negi and Rajesh Khanna, "A High Gain CPW Fed Metamaterial Antenna for UWB Applications," Progress In Electromagnetics Research C, Vol. 132, 51-63, 2023.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys., Vol. 10, No. 4, 509-514, 1968.

    2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-7, 2000.

    3. Houshmand, M., M. H. Zandi, and N. E. Gorji, "Modeling of optical losses in perovskite solar cells," Sup. Latt. Micro., Vol. 97, No. 1, 424-42, 2016.

    4. Islam, M. M., M. T. Islam, and M. Samsuzzaman, "Faruque MRI, compact metamaterial antenna for UWB applications," Electron. Lett., Vol. 51, No. 16, 1222-1224, 2015.

    5. Khan, O. M., Z. U. Islam, Q. U. Islam, and F. A. Bhatti, "Multiband high- gain printed Yagi array using square spiral ring metamaterial structures for S-band applications," IEEE Ant. Wirel. Propag. Lett., Vol. 13, 1100-1103, 2014.

    6. Zhang, K., Y. Yuan, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, "High-efficiency metalenses with switchable functionalities in microwave region," ACS Appl. Mater. Interfaces, Vol. 11, No. 31, 28423-28430, 2019.

    7. Li, H., G. M. Wang, T. Cai, J. G. Liang, and H. Hou, "Bifunctional circularly-polarized lenses with simultaneous geometrical and propagating phase control metasurfaces," J. Phys. D: Appl. Phys., Vol. 52, No. 46, 465105, 2019.

    8. Sultan, K., H. Abdullah, E. Abdallah, and E. Hashish, "Low-SAR miniaturized printed antenna for mobile, ISM, and WLAN services," IEEE Ant. Wirel. Propag. Lett., Vol. 12, 1106-1109, 2013.

    9. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.

    10. Kaur, S. and H. J. Kaur, "Comparative analysis of plasmonic metamaterial absorber for noble, alkaline earth and transition metals in visible region," 6th International Conference on Computing for Sustainable Global Development, 513-516, 2019.

    11. Hossain, K., et al., "Electrically tunable left-handed textile metamaterial for microwave applications," Materials, Vol. 14, No. 5, 1274, 2021.

    12. Fang, C. Y., J. S. Gao, and H. Liu, "A novel metamaterial filter with stable passband performance based on frequency selective surface," AIP Advances, Vol. 4, No. 7, 077114, 2014.

    13. Alam, M. J., M. R. I. Faruque, and M. T. Islam, "Labyrinth double split open loop resonator-based band pass filter design for S, C and X-band application," J. Phys. D: Appl. Phys., Vol. 51, No. 26, 1-8, 2018.

    14. Singh, R., I. Al-Naib, W. Cao, C. Rockstuhl, M. Koch, and W. Zhang, "The Fano resonance in symmetry broken terahertz metamaterials," IEEE Trans. Terahertz Sci. Technol., Vol. 3, No. 6, 1-7, 2013.

    15. Zhou, Z. and H. Yang, "Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial," Appl. Phys., Vol. 119, No. 1, 115-119, 2015.

    16. Alam, M. J., M. R. I. Faruque, M. J. Hossain, and M. T. Islam, "Depiction and analysis of a modified H-shaped double-negative meta atom for satellite communication," Int. J. Microw. Wirel. Technol., Vol. 10, No. 10, 1155-1165, 2018.

    17. Huangfu, J., L. Ran, H. Chen, and K. Chen, "Experimental confirmation of negative refractive index of a metamaterial composed of Ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, 2004.

    18. Chun, Y. C., C. Y. Ping, W. Qiong, and Z. S. Chuang, "Negative refraction of a symmetrical π-shaped metamaterial," Phys. Lett., Vol. 25, No. 2, 482-484, 2008.

    19. Hossain, M. J., M. R. I. Faraque, M. J. Alam, M. F. Mansor, and M. T. Islam, "A broadband negative refractive index meta-atom for quad-band and sensor applications," Microw. Opt. Technol. Lett., Vol. 60, No. 12, 2899-2907, 2018.

    20. Alam, T., F. B. Ashraf, and M. T. Islam, "Flexible paper substrate based wide band NRI metamaterial for X-band application," Microw. Opt. Technol. Lett., Vol. 60, No. 5, 1309-1312, 2018.

    21. Rahman, M. N., M. T. Islam, and M. Samsuzzaman, "Design and analysis of a resonator-based metamaterial for sensor applications," Microw. Opt. Technol. Lett., Vol. 60, No. 3, 694-698, 2017.

    22. Singh, H. S., S. Kalraiya, M. K. Meshram, and R. M. Shubair, "Metamaterial inspired CPW-fed compact antenna for ultrawide band applications," Int. J. RF Microw. Comput. Aided. Eng., e21768, 2019.

    23. Seshadri, A. and N. Gupta, "Modelling and analysis of metamaterial-based antenna for Wi-Fi and WLAN applications," Adv. in Comm. Dev. Net., Vol. 537, 167-173, 2019.

    24. Rajasekhar, N. V. and D. S. Kumar, "Metamaterial based compact UWB planar monopole antennas," Microw. Opt. Technol. Lett., Vol. 60, No. 6, 1332-1338, 2018.

    25. Pushkar, P. and V. R. Gupta, "A metamaterial-based tri band antenna for WiMAX/WLAN applications," Microw. Opt. Technol. Lett., Vol. 58, No. 3, 558-561, 2016.

    26. Mahmud, M. Z., M. T. Islam, N. Misran, M. J. Singh, and K. Mat, "A negative index metamaterial to enhance the performance of miniaturized UWB antenna for microwave imaging applications," Appl. Sci., Vol. 7, 1-16, 2017.

    27. Patel, S. K. and Y. Kosta, "Liquid metamaterial based microstrip antenna," Microw. Opt. Technol. Lett., Vol. 60, No. 2, 318-322, 2018.

    28. Nuthakki, V. R. and S. Dhamodharan, "UWB metamaterial-based miniaturized planar monopole antennas," Int. J. Electron. Comm., Vol. 82, 93-103, 2017.

    29. Rani, R. B. and S. K. Pandey, "Metamaterial-inspired printed UWB antenna for short range RADAR applications," Microw. Opt. Technol. Lett., Vol. 59, 1597-1600, 2017.

    30. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microw. Opt. Technol. Lett., Vol. 58, No. 12, 3008-3012, 2016.

    31. Arayeshnia, A., A. Bayat, M. Keshtkar-Bagheri, and S. Jarchi, "Miniaturized lowprofile antenna based on uniplanar quasi-composite right/left-handed metamaterial," Int. J. RF Microw. Comput. Aided. Eng., e21888, 2019.

    32. Pandit, S., A. Mohan, and P. Ray, "Metamaterial-inspired low-profile high-gain slot antenna," Microw. Opt. Technol. Lett., 1-6, 2019.

    33. Nguyen, N. L. and V. Y. Vu, "Gain enhancement for MIMO antenna using metamaterial structure," Int. J. Microw. Wirel. Technol., 1-12, 2019.

    34. Arora, C., S. S. Pattnaik, and R. N. Baral, "Metamaterial inspired DNG superstrate for performance improvement of microstrip patch antenna array," Int. J. Microw. Wirel. Technol., Vol. 10, No. 3, 318-327, 2018.

    35. Ghosh, J., D. Mitra, and S. R. B. Chaudhuri, "Reduction of leaky wave coupling in a superstrate loaded antenna using metamaterial," J. Electromag. Waves. App., Vol. 32, No. 17, 2292-2303, 2018.

    36. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Ant. Wirel. Propag. Lett., Vol. 13, 396-399, 2014.

    37. Sun, Y., S. W. Cheung, and T. I. Yuk, "Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications," IET Microw. Antennas Propag., Vol. 8, No. 15, 1363-1375, 2014.

    38. Bahrami, H., A. Mirbozorgi, R. Ameli, L. A. Rusch, and B. Gosselin, "Flexible polarization-diverse UWB antennas for implantable neural recording systems," IEEE Trans. Biomed. Circuits Syst., Vol. 10, No. 1, 38-48, 2016.

    39. Denidni, T. A. and M. A. Habib, "Broadband printed CPW-fed circular slot antenna," Electron. Lett., Vol. 42, No. 3, 135-136, 2006.

    40. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608.1-016608.7, 2004.

    41. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617.1-036617.11, 2005.

    42. Sarkhel, A., D. Mitra, and S. R. B. Chaudhuri, "A compact metamaterial with multi-band negative-index characteristics," Appl. Phys. A, Vol. 471, No. 122, 1-10, 2016.

    43. Negi, D., R. Khanna, and J. Kaur, "Design and performance analysis of a conformal CPW fed wideband antenna with Mu-Negative metamaterial for wearable applications," Int. J. Microw. Wirel. Technol., Vol. 11, No. 8, 1-15, 2019.

    44. Negi, D., R. Khanna, and J. Kaur, "Broadband gain enhancement of an UWB antenna using conformal wideband NRI metamaterial," Frequenz., Vol. 75, 3-4, 2020.