Vol. 132

Latest Volume
All Volumes
All Issues
2023-04-30

Design of Miniaturized Tri-Band Wearable Antenna Based on Characteristic Mode Theory

By Mingqing Wang, Zhong-Gen Wang, Ming Yang, Wen-Yan Nie, and Han Lin
Progress In Electromagnetics Research C, Vol. 132, 187-203, 2023
doi:10.2528/PIERC23022602

Abstract

In this study, a tri-band wearable antenna with a metal frame of 36×36×6.6 mm3 is designed, fabricated, and measured based on the characteristic mode theory. By analyzing the current and electric field distribution of the characteristic mode, the antenna is determined to be fed by a T-coupled structure. Moreover, a circular ring ground structure is added to the initial elliptical model structure to generate a new resonance in the n78 band. On the other hand, the current's path is changed by etching a rectangular slot, allowing the high-frequency resonance mode to be shifted to the right. Simulated and measured results show that the proposed antenna covers Bluetooth/Wi-Fi (2.4G, 5.8G) and N78 frequency bands, which can be respectively used for connecting a watch to a mobile phone, accessing the Internet and making phone calls. Furthermore, the antenna has a maximum peak gain of 4.11 dBi in free space and 6.9 dBi when being placed on the wrist, with a Specific Absorption Rate (SAR) lower than international standards, making it suitable for wearable devices.

Citation


Mingqing Wang, Zhong-Gen Wang, Ming Yang, Wen-Yan Nie, and Han Lin, "Design of Miniaturized Tri-Band Wearable Antenna Based on Characteristic Mode Theory," Progress In Electromagnetics Research C, Vol. 132, 187-203, 2023.
doi:10.2528/PIERC23022602
http://test.jpier.org/PIERC/pier.php?paper=23022602

References


    1. Skrivervik, K. and J. Trajkovikj, "Some considerations on wearable antennas," Int. Conf. Appl. Electromagn. Commun. (ICECom) 2013, 1-3, Dubrovnik, Croatia, 2013.

    2. Lyons, K. and H. Profita, "The multiple dispositions of on-body and wearable devices," IEEE Pervasive Computing, Vol. 13, No. 4, 24-31, 2014.
    doi:10.1109/MPRV.2014.79

    3. Hamouda, H., P. Le Thuc, R. Staraj, and G. Kossiavas, "Dualband MICS/WIFI small antenna for portable applications in telemedicine," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2081-2082, Orlando, FL, USA, 2013.

    4. Salonen, P., L. Sydanheimo, M. Keskilammi, and M. Kivikoski, "A small planar inverted-F antenna for wearable applications," Digest of Papers. Third International Symposium on Wearable Computers, 95-100, San Francisco, CA, USA, 1999.

    5. Marie, C., D. Esteve, J.-Y. Fourniols, C. Escriba, and E. Campo, "Smart wearable systems: Current status and future challenges," Artificial Intelligence in Medicine, Vol. 56, No. 3, 137-156, 2012.
    doi:10.1016/j.artmed.2012.09.003

    6. Rungtai, L. and J. G. Kreifeldt, "Ergonomics in wearable computer design," International Journal of Industrial Ergonomics, Vol. 27, No. 4, 259-269, 2001.
    doi:10.1016/S0169-8141(00)00055-X

    7. Gharode, D., A. Nella, and M. Rajagopal, "State-of-art design aspects of wearable, mobile, and flexible antennas for modern communication wireless systems," Int. J. Commun. Syst., Vol. 34, No. 15, 1-48, 2021.
    doi:10.1002/dac.4934

    8. Cure, D., T. M. Weller, and F. A. Miranda, "Study of a low-profile 2.4-GHz planar dipole antenna using a high-impedance surface with 1-D varactor tuning," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 506-515, 2013.
    doi:10.1109/TAP.2012.2223435

    9. Pandey, Q., K. K. Katare, A. Biswas, and M. J. Akhtar, "Frequency switchable AMC loaded folded slot antenna for dual band operation," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, Aurangabad, India, 2017.

    10. Zhu, S. and R. Langley, "Dual-band wearable textile antenna on an EBG substrate," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 926-935, 2009.
    doi:10.1109/TAP.2009.2014527

    11. Ta, S. X. and I. Park, "Dual-band low-profile crossed asymmetric dipole antenna on dual-band AMC surface," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 587-590, 2014.

    12. Joubert, J., J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, "CPW-fed cavity-backed slot radiator loaded with an AMC reflector," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 735-742, 2012.
    doi:10.1109/TAP.2011.2173152

    13. Raad, H. R., A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, "Flexible and compact AMC based antenna for telemedicine applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 524-531, 2013.
    doi:10.1109/TAP.2012.2223449

    14. Palukuru, V. K., A. Pekonen, V. Pynttari, R. Makinen, J. Hagberg, and H. Jantunen, "An inkjet-printed inverted-F antenna for 2.4-GHz wrist applications," Microw. Opt. Technol. Lett., Vol. 51, No. 12, 2936-2938, 2009.
    doi:10.1002/mop.24777

    15. Chen, Y.-S. and T.-Y. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1144-1147, 2016.
    doi:10.1109/LAWP.2015.2496366

    16. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 348-358, May 1971.
    doi:10.1109/TAP.1971.1139935

    17. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, September 1971.
    doi:10.1109/TAP.1971.1139999

    18. Harrington, R. and J. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 629-639, September 1971.
    doi:10.1109/TAP.1971.1139990

    19. Cabedo, F. M., A. Valero-Nogueira, E. Antonino-Daviu, and M. Ferrando-Bataller, "Modal analysis of a radiating slotted PCB for mobile handsets," 2006 First European Conference on Antennas and Propagation, 1-6, Nice, France, 2006.

    20. Antonino, D., E. Suarez-Fajardo, C. A., M. Cabedo-Fabres, and M. Ferrando-Bataller, "Wideband antenna for mobile terminals based on the handset PCB resonance," Microw. Opt. Technol. Lett., Vol. 48, No. 7, 1408-1411, 2006.
    doi:10.1002/mop.21654

    21. Deng, C., Z. Feng, and S. V. Hum, "MIMO mobile handset antenna merging characteristic modes for increased bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2660-2667, July 2016.
    doi:10.1109/TAP.2016.2537358

    22. Manteuffel, D. and R. Martens, "Compact multimode multielement antenna for indoor UWB massive MIMO," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2689-2697, July 2016.
    doi:10.1109/TAP.2016.2537388

    23. Wen, D., Y. Hao, H. Wang, and H. Zhou, "Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1437-1447, 2019.
    doi:10.1109/TAP.2018.2884849

    24. Liu, X. Z., G. Yu, J. Chao, H. H. Zhang, and Y. Liu, "TCM-based low-SAR MIMO antenna for smartwatch applications," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Nanjing, China, 2021.

    25. Zhang, X., et al., "Analysis and design of stable-performance circularly-polarized antennas based on coupled radiators for smart watches," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 7, 5312-5323, 2022.
    doi:10.1109/TAP.2022.3146890

    26. Yan, Y., J. Ouyang, A. Sharif, Q. Wang, and Y. Ban, "Dual-loop antenna with band-stop circuit for GPS/Bluetooth metal-rimmed smartwatch applications," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 455-456, Boston, MA, USA, 2018.

    27. Su, S.-W. and Y.-T. Hsieh, "Integrated metal-frame antenna for smartwatch wearable device," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3301-3305, July 2015.
    doi:10.1109/TAP.2015.2428736

    28. Zhang, H. H., G. G. Yu, Y. Liu, Y. X. Fang, G. Shi, and S. Wang, "Design of low-SAR mobile phone antenna: Theory and applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 698-707, 2021.
    doi:10.1109/TAP.2020.3016420

    29. Gao, X., Z. Zhang, W. Chen, Z. Feng, M. F. Iskander, and A.-P. Zhao, "A novel wrist wear dual-band diversity antenna," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, North Charleston, SC, USA, 2009.

    30. Trinh, L. H., T. Q. K. Nguyen, H. L. Tran, P. C. Nguyen, N. V. Truong, and F. Ferrero, "Low-profile horizontal omni-directional antenna for LoRa wearable devices," 2017 International Conference on Advanced Technologies for Communications (ATC), 136-139, Quy Nhon, Vietnam, 2017.

    31. Kwak, S. I., D.-U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA with metamaterials for body-SAR reduction in wearable applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 297-300, 2017.
    doi:10.1109/TEMC.2016.2593493

    32. Flores-Cuadras, J. R., J. L. Medina-Monroy, R. A. Chavez-Perez, and H. Lobato-Morales, "Novel ultra-wideband flexible antenna for wearable wrist worn devices with 4G LTE communications," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 777-783, 2017.
    doi:10.1002/mop.30393

    33. Su, S.-W. and Y.-T. Hsieh, "Integrated LDS antenna for B13 and B4/B3/B2/B1 LTE operation in smartwatch," Microw. Opt. Technol. Lett., Vol. 59, No. 4, 869-873, 2017.
    doi:10.1002/mop.30415

    34. Hong, C.-Y. and S.-H. Yeh, "Cellular antenna design with metallic housing for wearable device," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 419-420, Kaohsiung, Taiwan, 2016.

    35. Xiao, B., H. Wong, D. Wu, and K. L. Yeung, "Design of small multiband full-screen smartwatch antenna for IoT applications," IEEE Internet of Things Journal, Vol. 8, No. 24, 17724-17733, 2021.
    doi:10.1109/JIOT.2021.3082535

    36. Zhang, H. H., et al., "Design of low-SAR and high on-body efficiency tri-band smartwatch antenna utilizing the theory of characteristic modes of composite PEC-lossy dielectric structures," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 2, 1913-1918, 2023.
    doi:10.1109/TAP.2022.3222637

    37. Chen, W.-S., G.-Q. Lin, G.-R. Zhang, and C.-Y.-D. Sim, "Multiband antennas for GSM/GPS/LTE/WLAN smart watch applications," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, China, 2017.

    38. Ahmad, S., A. Ghaffar, X. J. Li, and N. Cherif, "A millimetre-wave tri-band antenna embedded on smart watch for wearable applications," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, Taipei, Taiwan, 2021.

    39. Jin, Y. and J. Choi, "Bandwidth enhanced compact dual-band smart watch antenna for WLAN 2.4/5.2 GHz application," 2017 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Suzhou, China, 2017.

    40. Chen, C.-H., Y.-F. Lin, P.-W. Huang, H.-M. Chen, and C.-T. Liao, "Design of multi-band antenna for LTE wearable device with shared slots and radiators for smart watch," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 11, 1-14, 2020.

    41. Ahmad, S., H. Boubakar, S. Naseer, M. Ehsanul Alim, Y. Ali Sheikh, A. Ghaffar, A. J. A. Al-Gburi, and N. O. Parchin, "Design of a tri-band wearable antenna for millimeter-wave 5G applications," Sensors, Vol. 22, No. 20, 1-14, 2022.
    doi:10.1109/JSEN.2022.3211123

    42. Foudazi, A., H. R. Hassani, and S. M. A. Nezhad, "Small UWB planar monopole antenna with added GPS/GSM/WLAN bands," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2987-2992, 2012.
    doi:10.1109/TAP.2012.2194632

    43. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971.
    doi:10.1109/TAP.1971.1139999

    44. Martens, R., E. Safin, and D. Manteuffel, "Inductive and capacitive excitation of the characteristic modes of small terminals," Proc. Loughborough Antennas Propag. Conf., 1-4, Nov. 2011.

    45. Li, W. T., X. W. Shi, and Y. Q. Hei, "Novel planar UWB monopole antenna with triple band-notched characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1094-1098, 2009.

    46. Painam, S. K. and C. M. Bhuma, "A compact hexa-band and UWB antenna using heptagon and nonagon rings with vertex feed," 2018 IEEE Indian Conference on Antennas and Propagation (InCAP), 1-4, Hyderabad, India, 2018.