Vol. 132

Latest Volume
All Volumes
All Issues
2023-04-16

Reconfigurable Frequency Selective Surfaces for X Band Applications

By Anett Antony, Sayantani Dutta, Bidisha Dasgupta, and Anamiya Bhattacharya
Progress In Electromagnetics Research C, Vol. 132, 79-88, 2023
doi:10.2528/PIERC23030304

Abstract

The paper presents a new technique for designing a reconfigurable frequency selective surface (RFSS) by mechanical means. The combination of triangular loop element and three-legged element has been used to design the proposed single substrate two sided frequency selective surface (FSS) structure which offers variable transmission coefficient characteristics over the X-band frequencies under TE polarization for different angles of incidence. Thus, the band stop characteristics can be reconfigured by changing incident angle which describes the structure as `reconfigurable reflector'. The proposed FSS geometry is polarization insensitive under both TE and TM polarizations. The simulated results are further cross verified by conducting measurement of the fabricated structure. The equivalent circuit model (ECM) of the proposed FSS geometry has been provided, and the equivalent circuit parameters of the proposed FSS geometry have also been extracted using the curve fitting techniques. The proposed FSS structure can be used as a frequency reconfigurable reflector surface/reconfigurable intelligent surface (RIS) for advanced wireless communication.

Citation


Anett Antony, Sayantani Dutta, Bidisha Dasgupta, and Anamiya Bhattacharya, "Reconfigurable Frequency Selective Surfaces for X Band Applications," Progress In Electromagnetics Research C, Vol. 132, 79-88, 2023.
doi:10.2528/PIERC23030304
http://test.jpier.org/PIERC/pier.php?paper=23030304

References


    1. Munk, B. A., Frequency Selective Surfaces --- Theory and Design, John Wiley & Sons, New York, 2000.
    doi:10.1002/0471723770

    2. Abadi, S. M. A. M. H., J. H. Booske, and N. Behdad, "Exploiting mechanical flexure as a means of tuning the responses of large-scale periodic structures," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 933-943, Mar. 2016.
    doi:10.1109/TAP.2015.2513418

    3. Ferreira, D., I. Cuinas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 242-250, Jan. 2017.
    doi:10.1109/TAP.2016.2631131

    4. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 781-784, Jun. 2013.
    doi:10.1109/LAWP.2013.2270950

    5. Silva, A. N., R. G. G. Carvalho, A. G. D. D'Assuncao, and J. P. Silva, "Simple and efficient design of reconfigurable FSS with triangular patch elements," International Applied Computational Electromagnetics Society Symposium --- Italy (ACES), May 2017.

    6. Bai, H., M. Yan, W. Li, J. Wang, L. Zheng, H. Wang, and S. Qu, "Tunable frequency selective surface with angular stability," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 6, 1108-1112, Jun. 2021.
    doi:10.1109/LAWP.2021.3073907

    7. Guo, M., Y. Zheng, Q. Chen, L. Ding, D. Sang, F. Yuan, T. Guo, Y. Fu, and , "Analysis and design of a high-transmittance performance for varactor-tunable frequency-selective surface," IEEE Trans. Antennas Propag., Vol. 69, No. 8, 4623-4632, Aug. 2021.
    doi:10.1109/TAP.2020.3045517

    8. Tian, T., X. Huang, K. Cheng, Y. Liang, S. Hu, L. Yao, D. Guan, Y. Xu, and P. Liu, "Flexible and reconfigurable frequency selective surface with wide angular stability fabricated with additive manufacturing procedure," IEEE Antennas Wirel. Propag. Lett., Vol. 19, No. 12, 2428-2432, Dec. 2020.
    doi:10.1109/LAWP.2020.3034944

    9. Abirami, S. B., E. F. Sundarsingh, and V. S. Ramalingam, "Mechanically reconfigurable frequency selective surface for RF shielding in indoor wireless environment," IEEE Trans. Electromag. Compatibility, Vol. 62, No. 6, 2643-2646, Dec. 2020.
    doi:10.1109/TEMC.2020.2983899

    10. Phon, R., S. Ghosh, and S. Lim, "Active frequency selective surface to switch between absorption and transmission band with additional frequency tuning capability," IEEE Trans. Antennas Propag., Vol. 67, No. 9, 6059-6067, Sept. 2019.
    doi:10.1109/TAP.2019.2916752

    11. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, New York, 2004.

    12. Liu, N., X. Sheng, C. Zhang, J. Fan, and D. Guo, "A design method for synthesizing wideband band-stop FSS via its equivalent circuit model," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2721-2725, Aug. 2017.
    doi:10.1109/LAWP.2017.2743114

    13. Chen, Q., S. Yang, J. Bai, and Y. Fu, "Design of absorptive/transmissive frequency-selective surface based on parallel resonance," IEEE Trans. Antennas Propag., Vol. 65, No. 9, 4897-4902, Sept. 2017.
    doi:10.1109/TAP.2017.2722875

    14. Huang, H. and Z. Shen, "Absorptive frequency-selective transmission structure with square-loop hybrid resonator," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3212-3215, Nov. 2017.

    15. Computer Simulation Technology (CST), , Version: 2019.

    16. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," Int. J. RF Microw. Computer- Aided Engg., Vol. 31, No. 2, 1-12, Dec. 2020.

    17. Parui, S. and A. Chatterjee, "A dual-layer frequency selective surface reflector for wideband applications," Radioengineering, Vol. 25, 67-72, Apr. 2016.

    18. Kesavan, A., R. Karimian, and A. T. Denidni, "A novel wideband frequency selective surface for millimeter-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1711-1714, Jan. 2016.
    doi:10.1109/LAWP.2016.2528221

    19. Ghosh, S. and K. V. Srivastava, "An equivalent circuit model of FSS based matematerial absorber using coupled line theory," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 511-514, Nov. 2014.

    20. Zhang, L., M. Z. Chen, W. Tang, J. Y. Dai, L. Miao, X. Y. Zhou, S. Jin, Q. Cheng, and T. J. Cui, "A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces," Nature Electro., Vol. 4, 218-227, Mar. 2021.
    doi:10.1038/s41928-021-00554-4