Vol. 132

Latest Volume
All Volumes
All Issues
2023-05-02

Electromagnetic Band Gap Antenna with E-Shaped Defected Ground Structure for Communication Systems

By Sahil Thakur, Louis W. Y. Liu, Himanshi, Rohit Jasrotia, Pawan Kumar, and Abhishek Kandwal
Progress In Electromagnetics Research C, Vol. 132, 205-215, 2023
doi:10.2528/PIERC23032702

Abstract

A compact wideband miniaturized electromagnetic band gap (EBG) antenna has been proposed for communication systems with E-shaped defected ground structure (DGS). The proposed EBG antenna operates in the frequency range from 7.3 GHz to 9.4 GHz which includes the X band uplink frequency band (for sending modulated signals) from 7.9 to 8.4 GHz and the ITU-assigned downlink frequency band (for receiving signals) from 7.25 to 7.75 GHz. With EBG layer on the top layer, an E-shaped DGS structure has been introduced in the ground plane which results in the enhancement of measured impedance bandwidth from 300 MHz to 2100 MHz with good radiation characteristics.

Citation


Sahil Thakur, Louis W. Y. Liu, Himanshi, Rohit Jasrotia, Pawan Kumar, and Abhishek Kandwal, "Electromagnetic Band Gap Antenna with E-Shaped Defected Ground Structure for Communication Systems," Progress In Electromagnetics Research C, Vol. 132, 205-215, 2023.
doi:10.2528/PIERC23032702
http://test.jpier.org/PIERC/pier.php?paper=23032702

References


    1. Pirhadi, A., M. Hakak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetic Research, Vol. 61, 215-230, 2006.
    doi:10.2528/PIER06021801

    2. Shaban, H. F., H. A. Elmikatay, and A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetic Research B, Vol. 10, 55-74, 2008.
    doi:10.2528/PIERB08081901

    3. Masri, T., M. K. A. Rahim, O. Ayop, F. Zubir, N. A. Samsuriand, and H. A. Majid, "Electromagnetic band gap structures incorporate with dual band microstrip antenna array," Progress In Electromagnetics Research M, Vol. 11, 111-122, 2010.
    doi:10.2528/PIERM10011401

    4. Burokur, S. N., A. Ourir, J.-P. Daniel, P. Ratajczak, and A. de Lustrac, "Highly directive ISM band cavity antenna using a bi-layered metasurface reflector," Microw. Opt. Technol. Lett., Vol. 51, No. 6, 1393-1396, Jun. 2009.
    doi:10.1002/mop.24391

    5. Chen, P., X. D. Yang, C. Y. Chen, Y. N. Zhao, and , "A novel uni-planar compact EBG structure," Progress In Electromagnetics Research Letters, Vol. 45, 31-34, 2014.

    6. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
    doi:10.2528/PIERB08031401

    7. Wong, K., Compact and Broadband Microstrip Antennas, Wiley, New York, 2002.
    doi:10.1002/0471221112

    8. Kandwal, A., R. Sharma, and S. Kumar Khah, "Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna," Microw. Opt. Technol. Lett., Vol. 55, 2251-2254, 2013.
    doi:10.1002/mop.27836

    9. Sharma, R., A. Kandwal, and S. K. Khah, "Wideband DGS circular ring microstrip antenna design using fuzzy approach with suppressed cross-polar radiations," Progress In Electromagnetics Research C, Vol. 42, 177-190, 2013.
    doi:10.2528/PIERC13061504

    10. Kandwal, A., R. Sharma, and S. K. Khah, "Dual band gap coupled antenna design with DGS for wireless communications," Advanced Electromagnetics, Vol. 2, No. 3, 51-58, 2014.
    doi:10.7716/aem.v2i3.201

    11. Ashwini, A., M. V. Kartikeyan, and A. Patnaik, "Efficiency enhancement of microstrip patch antenna with defected ground structure," Proceedings of International Conference on Microwave, Vol. 8, 729-731, 2008.

    12. Guha, D., M. Biswas, and Y. M. M. Antar, "Microstrip patch antenna with defected ground structure for cross polarization suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 455-458, 2005.
    doi:10.1109/LAWP.2005.860211

    13. Wong, K. L., C. L. Tang, and J. Y. Chiou, "Broad-band probe-fed patch antenna with a W-shaped ground plane," IEEE Trans. Antennas Propag., Vol. 50, No. 6, 827-831, Jun. 2002.
    doi:10.1109/TAP.2002.1017663

    14. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
    doi:10.2528/PIERC14092302

    15. Arya, A. K., A. Patnaik, and M. V. Kartikeyan, "Gain enhancement of micro-strip patch antenna using dumbbell shaped defected ground structure," International Journal of Scientific Research Engineering & Technology (IJSRET), Vol. 2, No. 4, 184-188, Jul. 2013.

    16. Tirado-Mendez, J. A., M. A. Peyrot-Solis, H. Jardon-Aguilar, E. A. Andrade-Gonzalez, and M. Reyes-Ayala, "Applications of novel defected microstrip structure (DMS) in planar passive circuits," Proceedings of the 10th WSEAS International Conference on CIRCUITS, 336-369, Vouliagmeni, Athens, Greece, Jul. 10-12, 2006.

    17. Imran Hussain Shah, S., S. Bashir, and S. D. H. Shah, "Compact multiband microstrip patch antenna using Defected Ground Structure (DGS)," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2367-2370, 2014.
    doi:10.1109/EuCAP.2014.6902292

    18. Kandwal, A., T. Chakravarty, and S. K. Khah, "Circuital method for admittance calculation of gap-coupled sectoral antennas," Microw. Opt. Technol. Lett., Vol. 54, 210-213, 2012.
    doi:10.1002/mop.26458

    19. Wi, S.-H., Y.-S. Lee, and J.-G. Yook, "Wideband microstrip patch antenna with U-shaped parasitic elements," IEEE Trans. Antennas Propag., Vol. 55, 1196-1199, 2007.
    doi:10.1109/TAP.2007.893427

    20. Zainud-Deen, S., M. Badr, E. Hassan, K. Awadalla, and H. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
    doi:10.2528/PIERB08010203

    21. Acharjee, J., K. Mandal, S. K. Mandal, and P. P. Sarkar, "Suppressing up to fourth harmonic of an ISM band microstrip patch antenna using compact defected ground structures," Microw. Opt. Technol. Lett., Vol. 59, No. 9, 2254-2259, 2017.
    doi:10.1002/mop.30714

    22. Fan, J., et al., "Ultrawideband harmonic suppression in microstrip patch antenna using novel defected ground structures," International Journal of Antennas and Propagation, 9602841, 2020.

    23. Wang, L., J. Yu, T. Xie, and K. Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, 9926753, 2021.

    24. Kumar, L., et al., "Design of compact F-shaped slot triple band antenna for WLAN/WiMAX applications," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 1101-1105, 2016.
    doi:10.1109/TAP.2015.2513099

    25. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 191-196, 2017.
    doi:10.1017/S1759078715001105

    26. Liu, J., W.-Y. Yin, and S. He, "A new defected ground structure and its application for miniaturized switchable antenna," Progress In Electromagnetics Research, Vol. 107, 115-128, 2010.
    doi:10.2528/PIER10050904

    27. Kordzadeh, A. and F. Hojat-Kashani, "A new reduced size microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research B, Vol. 11, 29-37, 2008.

    28. Huang, S. Y. and Y. H. Lee, "A compact E-shaped patterned ground structure and its applications to tunable bandstop resonator," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 3, 657-666, 2009.
    doi:10.1109/TMTT.2009.2013313

    29. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 191-196, 2017.
    doi:10.1017/S1759078715001105

    30. Kandasamy, A., et al., "Defected circular-cross stub copper metal printed pentaband antenna," Advances in Materials Science and Engineering, 6009092, 2022.

    31. Kiani, S. H., et al., "A novel shape compact antenna for ultrawideband applications," International Journal of Antennas and Propagation, 7004799, 2021.

    32. Hari Prasad, B. S. and M. V. Prasad, "Design and analysis of compact periodic slot multiband antenna with defected ground structure for wireless applications," Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020.
    doi:10.2528/PIERM20032605

    33. Li, R. and P. Gao, "Design of a UWB filtering antenna with defected ground structure," Progress In Electromagnetics Research Letters, Vol. 63, 65-70, 2016.
    doi:10.2528/PIERL16081301

    34. Sabaaw, A. M. A., K. S. Muttair, O. A. Al-Ani, and Q. H. Sultan, "Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications," Progress In Electromagnetics Research C, Vol. 122, 57-66, 2022.
    doi:10.2528/PIERC22050703

    35. Chavali, V. A. P. and A. A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2022.

    36. Dash, R. K., P. B. Saha, and D. Ghoshal, "Slotted patch based multiband antenna with multiple DGS effect to suppress cross polarized radiation," Progress In Electromagnetics Research C, Vol. 120, 179-193, 2022.
    doi:10.2528/PIERC22031707