This article presents a compact, low profile, four ports multiple-input-multiple-output (MIMO.) antenna operating at the n38 and n41 5G frequency bands. The antenna has a measured -10 dB bandwidth of 2.5-2.9 GHz with isolation less than -11 dB. The designed antenna system employs open slot radiators etched on a single-sided rectangular PCB substrate with a total size of 40 ×100 mm2, including a ground plane. The open slot radiators are symmetrically printed at the four corners of the rectangular substrate. The radiators are excited by 50-Ω strip lines. Rectangular-shaped slits are used as decoupling structures. MIMO parameters such as the envelope correlation coefficient (ECC), channel capacity loss (CCL), and mean effective gain (MEG) are being calculated using the measured results. The ECC is less than 0.1 over the entire operating band despite the antenna's small size. The proposed antenna shows good performance in two sub-6-GHz frequency bands for 5G NR applications: n38 (2570 to 2620 MHz) and n41 (2496 MHz-2690 MHz).
2. Zhao, A. and Z. Ren, "Wideband MIMO antenna systems based on coupled-loop antenna for 5G N77/N78/N79 applications in mobile terminals," IEEE Access, Vol. 7, 93761-93771, 2019, doi: 10.1109/ACCESS.2019.2913466.
doi:10.1109/ACCESS.2019.2913466
3. Sun, L., Y. Li, and Z. Zhang, "Wideband integrated quad-element MIMO antennas based on complementary antenna pairs for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 8, 4466-4474, Aug. 2021, doi: 10.1109/TAP.2021.3060020.
doi:10.1109/TAP.2021.3060020
4. Ikram, M., N. Nguyen-Trong, and A. Abbosh, "Hybrid antenna using open-ended slot for integrated 4G/5G mobile application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 4, 710-714, Apr. 2020, doi: 10.1109/LAWP.2020.2978181.
doi:10.1109/LAWP.2020.2978181
5. Barani, I. R. R. and K.-L.Wong, "Integrated inverted-F and open-slot antennas in the metal-framed smartphone for 2×2 LTE LB and 4×4 LTE M/HB MIMO operations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5004-5012, Oct. 2018, doi: 10.1109/TAP.2018.2854191.
doi:10.1109/TAP.2018.2854191
6. Kumar, M. and V. Nath, "Open ended microstrip-line-fed compact wideband MIMO-diversity antenna with multiple asymmetric elliptical wide-slots," 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), 1-4, Mar. 2019, doi: 10.23919/URSIAP-RASC.2019.8738508.
7. Barani, I. R. R., K.-L. Wong, Y.-X. Zhang, and W.-Y. Li, "Low-profile wideband conjoined open-slot antennas fed by grounded coplanar waveguides for 4×4 5G MIMO operation," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2646-2657, Apr. 2020, doi: 10.1109/TAP.2019.2957967.
doi:10.1109/TAP.2019.2957967
8. Moat, T. E., S. I. Latif, and G. Lazarou, "Improving isolation of open multi-slot 4G antennas with microstrip feed line for MIMO applications," 2019 SoutheastCon, 1-2, Apr. 2019, doi: 10.1109/SoutheastCon42311.2019.9020338.
9. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3820-3830, Jun. 2019, doi: 10.1109/TAP.2019.2902751.
doi:10.1109/TAP.2019.2902751
10. Dioum, I., K. Diallo, M. M. Khouma, I. Diop, L. Sane, and A. Ngom, "Miniature MIMO antennas for 5G mobile terminals," 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), 1-6, May 2018, doi: 10.1109/ICMCS.2018.8525870.
11. Chattha, H. T., "4-port 2-element MIMO antenna for 5G portable applications," IEEE Access, Vol. 7, 96516-96520, 2019, doi: 10.1109/ACCESS.2019.2925351.
doi:10.1109/ACCESS.2019.2925351
12. Al Abbas, E., M. Ikram, and A. Abbosh, "Dual functional MIMO antenna system for mm-Wave 5G and 2 GHz 4G communications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 709-710, Jul. 2019, doi: 10.1109/APUSNCURSINRSM.2019.8888970.
13. Karimian, R., H. Oraizi, S. Fakhte, and M. Farahani, "Novel F-shaped quad-band printed slot antenna for WLAN and WiMAX MIMO systems," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 405-408, 2013, doi: 10.1109/LAWP.2013.2252140.
doi:10.1109/LAWP.2013.2252140
14., "CST Studio Suite," Dassault Systèmes, 2021. www.cst.com (accessed Apr. 11, 2021).
15. Stein, S., "On cross coupling in multiple-beam antennas," IRE Transactions on Antennas and Propagation, Vol. 10, No. 5, 548-557, Sep. 1962, doi: 10.1109/TAP.1962.1137917.
doi:10.1109/TAP.1962.1137917
16. Chae, S. H., S. Oh, and S.-O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 122-125, 2007, doi: 10.1109/LAWP.2007.893109.
doi:10.1109/LAWP.2007.893109
17. Rafique, U., S. Agarwal, N. Nauman, H. Khalil, and K. Ullah, "Inset-fed planar antenna array for dual-band 5G MIMO applications," Progress In Electromagnetics Research C, Vol. 112, 83-98, 2021.
doi:10.2528/PIERC21021302
18. Yacoub, A., M. Khalifa, and D. N. Aloi, "Compact 2×2 automotive MIMO antenna systems for sub-6 GHz 5G and V2X communications," Progress In Electromagnetics Research B, Vol. 93, 23-46, 2021.
doi:10.2528/PIERB21031606
19. Ren, Z., A. Zhao, and S. Wu, "MIMO antenna with compact decoupled antenna pairs for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1367-1371, Jul. 2019, doi: 10.1109/LAWP.2019.2916738.
doi:10.1109/LAWP.2019.2916738
20. Ullah, R., S. Ullah, B. Kamal, and R. Ullah, "A four-port multiple input multiple output (MIMO) antenna for future 5G smartphone applications," 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), 1-5, 2019, doi: 10.1109/ICECCE47252.2019.8940779.