In application to active microwave remote sensing, the counterwise RL (left-hand circularly polarized transmitting and right-hand circularly polarized receiving) and LR polarized bistatic scattering are generally stronger than the likewise LL and RR ones, respectively. In this paper, we investigate the circularly polarized propagation over terrain profile at 1.575 GHz and 900 MHz in application to wireless communication. Completely different from common sense in remote sensing, however, numerical simulations show that field strengths for likewise polarizations are larger than those for counterwise polarizations. For further verification, circularly polarized bistatic scattering from terrain is also provided, which is consistent with previous conclusion that the counterwise LR polarized one is larger. Physical mechanism of such a contradictory behavior is explicated by local Fresnel reflections, and physical insights are offered for terrain propagation of circular polarizations. It is suggested that the likewise configuration be adopted in wireless communication, although the counterwise is adopted in microwave remote sensing.
2. Tejeswee, S. and S. Verma, "Wide band circularly polarized antenna for (5{7 GHz) WLAN/WiMAX/wireless applications," Second Int. Conference on Electronics, Communication and Aerospace Technology (ICECA), 1290-1294, Coimbatore, 2018.
3. Sharif, A., M. A. Imran, J. Ouyang, Q. H. Abbasi, and Y. Yan, "Circular polarized RFID tag antenna design using characteristic mode analysis," Int. Workshop on Antenna Technology (iWAT), 62-64, Miami, FL, USA, 2019.
4. Genovesi, S., F. Costa, F. A. Dicandia, M. Borgese, and G. Manara, "Orientation-insensitive and normalization-free reading chipless RFID system based on circular polarization interrogation," IEEE Trans. Antennas Propagat., Vol. 68, No. 3, 2370-2378, 2020.
doi:10.1109/TAP.2019.2949417
5. Raney, R. K., A. Freeman, and R. L. Jordan, "Improved range ambiguity performance in quad-pol SAR," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 2, 349-356, 2012.
doi:10.1109/TGRS.2011.2121075
6. Pincus, P., M. Preiss, A. S. Goh, and D. Gray, "Polarimetric calibration of circularly polarized synthetic aperture radar data," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 12, 6824-6839, 2017.
doi:10.1109/TGRS.2017.2734924
7. Yang, P.-J., L.-X. Guo, and Q. Wang, "Circularly polarized wave scattering from two-dimensional dielectric rough sea surface," Progress In Electromagnetics Research M, Vol. 44, 119-126, 2015.
doi:10.2528/PIERM15090702
8. Yang, P.-J., R. Wu, X. Ren, Y. Zhang, and Y. Zhao, "Doppler spectrum of scattered wave from two-dimensional time-varying nonlinear sea surfaces under right-hand circularly polarized wave incidence," Progress In Electromagnetics Research B, Vol. 84, 61-77, 2019.
doi:10.2528/PIERB19012001
9. Zavorotny, V. U. and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 2, 951-964, 2000.
doi:10.1109/36.841977
10. Zavorotny, V. U. and A. G. Voronovich, "Bistatic radar scattering from an ocean surface in the small-slope approximation," Proc. IEEE Int. Geosci. Remote Sens. Symp., Vol. 5, 2419-2421, Piscataway, NJ, USA, 1999.
11. Xu, P. and K. S. Chen, "Circularly polarized bistatic scattering from Sastrugi snow surfaces," IEEE Geosci. Remote Sens. Lett., Vol. 14, No. 8, 1398-1402, 2017.
doi:10.1109/LGRS.2017.2714502
12. Xu, P. and L. Tsang, "Propagation over terrain and urban environment using the multilevel UV method and a hybrid UV/SDFMM method," IEEE Antennas Wireless Propagat. Lett., Vol. 3, 336-339, 2004.
13. Johnson, J. T., R. T. Shin, J. C. Edison, L. Tsang, and J. A. Kong, "A method of moments model for VHF propagation," IEEE Trans. Antennas Propagat., Vol. 45, No. 1, 115-125, 1997.
doi:10.1109/8.554248
14. Hviid, J. T., J. B. Andersen, J. Toftgard, and J. Bojer, "Terrain-based propagation model for rural area --- An integral equation approach," IEEE Trans. Antennas Propagat., Vol. 43, No. 1, 41-46, 1995.
doi:10.1109/8.366349
15. Brennan, C. and P. J. Cullen, "Application of the fast far-field approximation to the computation of UHF pathloss over irregular terrain," IEEE Trans. Antennas Propagat., Vol. 46, No. 6, 881-890, 1998.
doi:10.1109/8.686777
16. Ayasli, S., "SEKE: A computer model for low altitude radar propagation over irregular terrain," IEEE Trans. Antennas Propagat., Vol. 34, No. 8, 1013-1023, 1986.
doi:10.1109/TAP.1986.1143933
17. Xu, P., K. S. Chen, Y. Liu, J. C. Shi, C. Peng, R. Jiang, and J. Zeng, "Full-wave simulation and analysis of bistatic scattering and polarimetric emissions from double-layered sastrugi surfaces," IEEE Trans. Geosci. Remote Sens., Vol. 55, No. 1, 292-307, 2017.
doi:10.1109/TGRS.2016.2606323
18. Tsang, L., D. Chen, P. Xu, Q. Li, and V. Jandhyala, "Wave scattering with the UV multilevel partitioning method: 1. Two-dimensional problem of perfect electric conductor surface scattering," Radio Sci., Vol. 39, No. 5, RS5010, 2004.