A novel time-domain physical optics (TDPO) is proposed to determine the transient response of electromagnetic scattering of electrically large homogeneous dielectric targets modeled with triangular facets. Formula of the novel TDPO is derived, in which a time-domain convolution product between the incident plane wave and the time-domain physical-optics (PO) integral is included. The time-domain PO integral is evaluated with a closed-form expression based on a Radon transform interpretation, which makes the novel TDPO highly efficient in speed. The wideband rador cross section (RCS) is conveniently obtained from the transient response with a fast Fourier transform (FFT). Numerical results demonstrate the efficacy of the new method.
2. Meng, R., Z. Dongming, L. Ying, and H. Jianguo, "Coupled TDIE-PO method for transient scattering from electrically large conducting objects ," Electron. Lett., Vol. 44, No. 4, 258-259, Feb. 2008.
doi:10.1049/el:20083532
3. Zhang, G. H. and M. Y. Xia, "Time domain integral equation approach for analysis of transient response by metallic-dielectric composite bodies," Progress In Electromagnetics Research, Vol. 87, 1-14, 2008.
doi:10.2528/PIER08092803
4. Veruttipong, T. W., "Time domain version of the uniform GTD," IEEE Trans. Antennas Propag., Vol. 38, No. 11, 1757-1764, Nov. 1990.
doi:10.1109/8.102736
5. Johansen, P. M., "Time-domain version of the physical theory of diffraction," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 261-270, Feb. 1999.
doi:10.1109/8.761065
6. Sun, E.-Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. Antennas Propag., Vol. 42, No. 1, 9-15, Jan. 1994.
doi:10.1109/8.272295
7. Yang, L.-X., D.-B. Ge, and B. Wei, "FDTD/TDPO hybrid approach for analysis of the EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206
8. Faghihi, F. and H. Heydari, "A combination of time domain ¯nite element-boundary integral with time domain physical optics for calculation of electromagnetic scattering of 3-D structures," Progress In Electromagnetics Research, Vol. 79, 463-474, 2008.
doi:10.2528/PIER07110206
9. Faghihi, F. and H. Heydari, "Time domain physical optics for the higher-order FDTD modeling in electromagnetic scattering from 3-D complex and combined multiple materials objects," Progress In Electromagnetics Research, Vol. 95, 87-102, 2009.
doi:10.2528/PIER09040407
10. Bölükbas, D. and A. A. Ergin, "A Radon transform interpretation of the physical optics integral," Microw. Opt. Technol. Lett., Vol. 44, No. 3, 284-288, Feb. 2005.
doi:10.1002/mop.20612
11. Serim, H. A. and A. A. Ergin, "Computation of the physical optics integral on NURBS surfaces using a Radon transform interpretation," IEEE Antennas Wireless Propag. Lett., Vol. 7, 70-73, 2008.
doi:10.1109/LAWP.2008.915811
12. Klement, D., J. Preissner, and V. Stein, "Special problems in applying the physical optics method for backscatter computation of combined objects," IEEE Trans. Antennas Propag., Vol. 36, No. 2, 228-237, Feb. 1988.
doi:10.1109/8.1100
13. Rius, J. M., M. Ferrando, and L. Jofre, "High-frequency RCS of complex radar targets in real-time," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1308-1319, Sep. 1993.
doi:10.1109/8.247759
14. Zha, F.-T., S.-X. Gong, Y.-X. Xu, Y. Guan, and W. Jiang, "Fast shadowing technique for electrically large targets using z-buffer," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2--3, 341-349, 2009.
doi:10.1163/156939309787604409
15. Gordon, W. B., "Far-field approximation to the Kirchhoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, No. 7, 590-592, Jul. 1975.