Vol. 28

Latest Volume
All Volumes
All Issues
2013-01-28

Aperture Beam Expansion by Using a Spectral 2D-Gpof Method

By Massimiliano Casaletti and Stefano Maci
Progress In Electromagnetics Research M, Vol. 28, 245-257, 2013
doi:10.2528/PIERM12082007

Abstract

A method is presented for computing aperture-radiated fields in terms of complex-source type beams. These beams are generated in a natural way by expanding the aperture field spectrum in a sum of complex exponentials. The latter are obtained by using the 2D-GPOF method. Inverse transformation in spatial domain leads to an analytical form in terms of complex source points. Fields radiated by apertures obtained via this approach are validated by direct near field integration and compared with those calculated with spectral-based beam expansion which starts from the Hankel spectrum and uses a 1D-GPOF approach.

Citation


Massimiliano Casaletti and Stefano Maci, "Aperture Beam Expansion by Using a Spectral 2D-Gpof Method," Progress In Electromagnetics Research M, Vol. 28, 245-257, 2013.
doi:10.2528/PIERM12082007
http://test.jpier.org/PIERM/pier.php?paper=12082007

References


    1. Felsen, L. B., "Complex-source-point solutions of the field equations and their relation to the propagation and scattering of gaussian beams," Proc. Symp. Math., Vol. 18, 39-56, 1975.

    2. Mengtao , Y., Y. Zhang, D. Arijit, J. Zhong, and T. K. Sarkar, "Two-dimensional discrete complex image method (DCIM) for closed-form Green's function of arbitrary 3D structures in general multilayered media," IEEE Trans. on Antennas and Propagat., Vol. 56, No. 5, 1350-1357, 2008.
    doi:10.1109/TAP.2008.922176

    3. Sommerfeld, A., Partial Differential Equations, Academic Press, New York, 1964.

    4. Hansen, T. B. and G. Kaiser, "Huygens' principle for complex spheres," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 59, 3835-3847, 2011.
    doi:10.1109/TAP.2011.2163764

    5. Tap, K., P. H. Pathak, and R. J. Burkholder, "Exact complex source point beam expansions for electromagnetic fields," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 9, 3379-3390, 2011.
    doi:10.1109/TAP.2011.2161438

    6. Deschamps, L. B., "The Gaussian beam as a bundle of complex rays," Electronics Letters, Vol. 7, No. 23, 684-685, 1971.
    doi:10.1049/el:19710467

    7. Chou, H. T., P. H. Pathak, and R. J. Burkholder, "Application of gaussian-ray basis functions for the rapid analysis of electromagnetic radiation from reflector antennas," IEE Proc. Microw. Antennas Propagat., Vol. 150, No. 3, 177-183, 2003.
    doi:10.1049/ip-map:20030506

    8. Withington, S., J. A. Murphy, and K. G. Isaak, "Representation of mirrors in beam waveguides as inclined phase-transforming surfaces," Infrared Phys. Technol., Vol. 36, No. 3, 723-734, 1995.
    doi:10.1016/1350-4495(94)00047-O

    9. Heyman, E. and I. Beracha, "Complex multipole pulsed beams and Hermite pulsed beams: A novel expansion scheme for transient radiation from well-collimated apertures," J. Opt. Soc. Am. A, Vol. 9, No. 10, 1779-1793, 1992.
    doi:10.1364/JOSAA.9.001779

    10. Caravaca Aguirre, A. M. and T. Alieva, "Orbital angular moment Orbital angular moment density of beam given as a superposition of Hermite-Laguerre-Gauss functions," PIERS Online, Vol. 7, No. 5, 476-480, 2011.

    11. Martini, E., G. Carli, and S. Maci, "A domain decomposition method based on a generalized scattering matrix formalism and a complex source expansion," Progress In Electromagnetics Research B, Vol. 19, 445-473, 2010.
    doi:10.2528/PIERB10012110

    12. Tap, , K., P. H. Pathak, and R. J. Burkholder, "Exact complex source point beam expansion of electromagnetic fields from arbitrary closed surfaces," 2007 IEEE Antennas and Propagation Society International Symposium, 4028-4031, June 9-15, 2007.

    13. Steinberg, B. Z., E. Heyman, and L. B. Felsen, "Phase space methods for radiation from large apertures," Radio Sci., Vol. 26, No. 1, 219-227, 1991.
    doi:10.1029/90RS01501

    14. Shlivinski, A., E. Heyman, A. Boag, and C. Letrou, "A phase-space beam summation formulation for ultrawide-band radiation: A multiband scheme," IEEE Trans. on Antennas and Propagat., Vol. 52, No. 8, 2042-2056, 2005.
    doi:10.1109/TAP.2004.832513

    15. Chabory, A., , J. Sokoloff, and S. Bolioli, "Novel Gabor-based Gaussian beam expansion for curved aperture radiation in dimension two," Progress In Electromagnetics Research, Vol. 58, 171-185, 2006.
    doi:10.2528/PIER05090702

    16. Skokic, S., M. Casaletti, S. Maci, and B. Srensen, "Complex conical beams for aperture field representations," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 2, 611-622, 2011.
    doi:10.1109/TAP.2010.2096379

    17. Hua, Y. and T. K. Arkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. on Antennas and Propagat., Vol. 37, No. 2, 229-234, 1989.
    doi:10.1109/8.18710

    18. Fructos, A. L., R. R. Boix, and F. Mesa, "Efficient computation E±cient computation periodic dyadic Green's function," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 7, 2557-2564, 2011.
    doi:10.1109/TAP.2011.2152344

    19. Akyuz, M. S., V. B. Erturk, and M. Kalfa, "Closed-form Green's function representations for mutual coupling calculations between apertures on a perfect electric conductor circular cylinder covered with dielectric layers," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 3094-3098, 2011.
    doi:10.1109/TAP.2011.2158787

    20. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. on Antennas and Propagat., Vol. 37, No. 7, 918-926, 1989.
    doi:10.1109/8.29386

    21. Felsen, L. B. and N. Marcuwitz, "Radiation and Scattering of Waves," Wiley-IEEE Press, , 1994.

    22. Balanis, C. A., Advanced Electromagnetic Engineering, John Sons, New York, 2005.

    24. Casaletti, M., S. Maci, and G. Vecchi, "A complete set of linear-phase basis functions for scatterers with flat faces and for planar apertures," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 2, 563-573, 2011.
    doi:10.1109/TAP.2010.2096178