Vol. 28

Latest Volume
All Volumes
All Issues

A Signal Model Based on Combination Chaotic Map for Noise Radar

By Qilun Yang, Yunhua Zhang, and Xiang Gu
Progress In Electromagnetics Research M, Vol. 28, 57-71, 2013


We propose a combination chaotic map (CCM) signal model to resolve the limited-word-length problem in digitally realizing chaotic signals used for noise radar. The proposed CCM has approximated infinite dimension, much more complicated phase space structure as well as better chaotic properties. The radar signal based on CCM presents much lower PSLR of auto-correlation as well as much flatter power spectrum, so it is very suitable for generating wide-band radar signal. Simulation experiments are conducted to show the good performance of the signal.


Qilun Yang, Yunhua Zhang, and Xiang Gu, "A Signal Model Based on Combination Chaotic Map for Noise Radar," Progress In Electromagnetics Research M, Vol. 28, 57-71, 2013.


    1. Lorenz, E. N., "Deterministic nonperiodic flow," Journal of the Atmospheric Sciences, Vol. 20, 130-141, 1963.

    2. Jiang, T., S. Qiao, Z. Shi, L. Peng, J. Huangfu, W. Z. Cui, W. Ma, and L. Ran, "Simulation and experimental evaluation of the radar signal performance of chaotic signals generated from a microwave colpitts oscillator," Progress In Electromagnetics Research, Vol. 90, 15-30, 2009.

    3. Ding, K. and R. Yang, "Point target imaging simulation using chaotic signals," IEEE International Radar Conference, 847-850, 2005.

    4. Yang, Y., J. Zhang, and C. Liu, "Chaotic FM signals for SAR jamming imaging," 1st Asian and Pacific Conference on Synthetic Aperture Radar, 87-89, 2007.

    5. Harman, S. A., A. J. Fenwick, and C. Williams, "Chaotic signals in radar?," 3rd European Radar Conference, 49-52, 2006.

    6. Xiang, L. and J. Zeng, "The chaotic signal design for MIMO radar," International Conference on Environmental Science and Information Application Technology (ESIAT), 611-614, 2010.

    7. Callegari, S., R. Rovatti, and G. Setti, "Chaos-based FM signals: Application and implementation issues," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 50, 1141-1147, 2003.

    8. Qiao, S., Z. G. Shi, T. Jiang, and L. X. Ran, "A new architecture of UWB radar utilizing microwave chaotic signals and chaos synchronization," Progress In Electromagnetics Research, Vol. 75, 225-237, 2007.

    9. Yang, J., Z. K. Qiu, X. Li, and Z. W. Zhuang, "Uncertain chaotic behaviours of chaotic-based frequency- and phase-modulated signals," IET Signal Processing, Vol. 5, 748-756, 2011.

    10. Shi, Z. G., S. Qiao, K. S. Chen, W. Z. Cui, W. Ma, T. Jiang, and L. X. Ran, "Ambiguity functions of direct chaotic radar employing microwave chaotic Colpitts oscillator," Progress In Electromagnetics Research, Vol. 77, 1-14, 2007.

    11. Chen, B., J. Tang, Y. Zhang, P. Cai, J. Huang, and G. Q. Huang, "Chaotic signals with weak-structure used for high resolution radar imaging," International Conference on Communications and Mobile Computing, 325-330, 2009.

    12. Yang, J., Z.-K. Qiu, L. Nie, and Z.-W. Zhuang, "Frequency modulated radar signals based on high dimensional chaotic maps," 10th IEEE International Conference on Signal Processing (ICSP), 1923-1926, 2010.

    13. Deng, Y., Y. Hu, and X. Geng, "Hyper chaotic logistic phase coded signal and its sidelobe suppression," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, 672-686, 2010.

    14. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.

    15. Wang, M., F. Guo, H. S. Qu, and S. Li, "Combined random number generators: A review," IEEE 3rd International Conference on Communication Software and Networks (ICCSN), 443-447, 2011.

    16. Feng, T., C. Chen, and Y. Hu, "A novel method of designing chaotic spread-spectrum sequence based on combined Tent-map," China-Japan Joint Microwave Conference Proceedings (CJMW), 1-4, 2011.

    17. Huang, J.-H. and L. Yang, "A block encryption algorithm combined with the Logistic mapping and SPN structure," 2nd International Conference on Industrial and Information Systems (IIS), 156-159, 2010.

    18. Flores, B. C., E. A. Solis, and G. Thomas, "Assessment of chaos-based FM signals for range-Doppler imaging," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 150, 313-322, 2003.

    19. Schuster, H. G., Deterministic Chaos: An Introduction,, 4th Revised and Enlarged Edition, Wiley-VCH Verlag, Weinheim, 2005.

    20. Ashtari, A., G. Thomas, H. Garces, and B. C. Flores, "Radar signal design using chaotic signals," International Waveform Diversity and Design Conference, 353-357, 2007.

    21. Ashtari, A., G. Thomas, W. Kinsner, and B. C. Flores, "Sufficient condition for chaotic maps to yield chaotic behavior after FM," IEEE Transactions on Aerospace and Electronic Systems, Vol. 4, 1240-1248, 2008.

    22. Yanmin, G. L. H., "Method of generating infinite dimensional pseudo-random sequence based on combination chaotic map," Statistics and Decision, Vol. 10, 16-19, 2010 (in Chinese).

    23. Liu, L., J. Hu, Z. He, C. Han, and C. Lu, "Chaotic signal reconstruction with application to noise radar system," International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 1-4, 2010.

    24. Sobhy, M. I. and A. E. R. Shehata, "Methods of attacking chaotic encryption and countermeasures," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 2, 1001-1004, 2001.

    25. Son, J. S., G. Thomas, and B. C. Flores, Range-Doppler Radar Imaging and Motion Compensation, Artech House Publishers, 2001.

    26. Park, J. I. and K. T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.

    27. Axelsson, S. R. J., "Noise radar using random phase and frequency modulation," IEEE International Proceedings Geoscience and Remote Sensing Symposium (IGARSS), Vol. 7, 4226-4231, 2003.