Multi Populations Rate Equations (MPREs) model is used to analyze the dynamic characteristics of the InAs/InP (113) B self assembled quantum dot laser. The resulting system of differentaial equations is solved using fourth-order Runge-Kutta method taking into consideration homogeneous and inhomogeneous broadening of optical gain. The effects of the injected current, Full Width at Half Maximum (FWHM) of the homogenous broadening, and initial relaxation time (phonon bottleneck) on the rise time, fall time, and hence the maximum allowable bit rate of the optical signal are investigated.
2. Yokoyama, H., "Highly stabilized mode-locked semiconductor diode lasers," Rev. Laser Eng., Vol. 27, 750-755, 1999.
doi:10.2184/lsj.27.750
3. Yokoyama, H., "Highly reliable mode-locked semiconductor lasers," IEICE Trans. on Electron., Vol. E85-C, No. 1, 27-36, 2002.
4. Jiang, L. A., M. E. Grein, E. P. Ippen, C. McNeilage, J. Searls, and H. Yokoyama, "Quantum limited noise performance of a mode locked laser diode," Opt. Lett., Vol. 27, No. 1, 49-51, 2002.
doi:10.1364/OL.27.000049
5. Feiste, U., R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H. G.Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers, and F. Rumpf, "160 Gbit/s transmission over 116km ¯eld-installed fiber using 160 Gbit/s OTDM and 40 Gbit/s ETDM," Electron. Lett., Vol. 37, No. 7, 443-445, 2001.
doi:10.1049/el:20010283
6. Agrawal, G. P., Fiber-Optic Communication Systems, Wiley, New York, 2002.
doi:10.1002/0471221147
7. Ramamurthy, B., "Switches, wavelength routers, and wavelength converters," Optical WDM Networks --- Principles and Practice,, K. M. Sivalingam and S. Subramaniam (eds)., 51-75, Kluwer, Boston, 2001.
8. Mukherjee, B. and H. Zang, "Introduction survey of state-of-the-art," Optical WDM Networks --- Principles and Practice, K. M. Sivalingam and S. Subramaniam (eds.), 3-24, Kluwer, Boston, 2001.
9. Rafailov, E. U., M. A. Cataluna, and E. A. Avrutin, "Ultrafast Lasers Based on Quantum Dot Structures: Physics and Devices," Wiley, New York, 2011.
10. Sugawara, M., R. K. Willardson, and E. R.Weber, "Self-Assembled InGaAs/GaAs Quantum Dots (Semiconductors and Semimetals)," Academic Press, 1999.
11. Sugawara, M., N. Hatori, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, "Modelling room-temperature lasing spectra of 1.3mm homogeneous broadening of optical gain under current injection," J. Appl. Phy., Vol. 97, No. 4, 043523, 2005.
doi:10.1063/1.1849426
12. Naeimi, A. S., D. G. Nahri, and S. A. Kazemipour, "Analysis of dynamic characteristics of self-assembled quantum dot lasers," World Applied Sciences Journal, Vol. 11, No. 1, 6-11, 2010.
13. Sugawara, M., K. Mukai, and Y. Nakata, "Light emission spectra of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: E®ect of homogeneous broadening of the optical gain on lasing characteristics," Appl. Phys. Lett., Vol. 74, No. 11, 1999.
doi:10.1063/1.123616
14. Markus, A., J. X. Chen, C. Paranthoen, A. Fiore, C. Platz, and O. Gauthier-Lafaye, "Simultaneous two-state lasing in quantum-dot lasers," Appl. Phys. Lett., Vol. 82, No. 12, 1818-1820, 2003.
doi:10.1063/1.1563742
15. Miska, P., C. Paranthoen, J. Even, O. Dehaese, H. Folliot, N. Bertru, S. Loualiche, M. Senes, and X. Marie, "Optical spectroscopy and modeling of double-cap grown InAs/InP quantum dots with long wavelength emission," Semicond. Sci. Technol., Vol. 17, L63-L67, 2002.
doi:10.1088/0268-1242/17/10/103
16. Grillot, F., K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, "Spectral analysis of 1.55 μm InAs-InP (113) B quantum-dot lasers based on a multipopulation rate equations model," IEEE Journal of Quantum Electronics, Vol. 45, No. 7, 872-878, 2009.
doi:10.1109/JQE.2009.2013174
17. Ohnesorge, B., M. Albrecht, J. Oshinowo, Y. Arakawa, and A. Forchel, "Rapid carrier relaxation in self-assembled InxGa1-x As/GaAs quantum dots," Phys. Rev. B, Vol. 54, No. 16, 11532, 1996.
doi:10.1103/PhysRevB.54.11532
18. Berg, T., S. Bischoff, I. Magnusdottir, and J. Mork, "Ultrafast gain recovery and modulation limitations in self assembled quantum-dot devices," IEEE Photonics Technol. Lett., Vol. 13, No. 6, 541-543, 2001.
doi:10.1109/68.924013
19. Markus, A., J. X. Chen, O. Gauthier-Lafaye, J. Provost, C. Paranthoen, and A. Fiore, "Impact of intraband relaxation on the performance of a quantum-dot laser," IEEE J. Sel. Topics Quantum Electron., Vol. 9, No. 5, 1308-1314, 2003.
doi:10.1109/JSTQE.2003.819494
20. Gioannini, M. and I. Montrosset, "Numerical analysis of the frequency chirp in quantum-dot semiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 43, No. 10, 2007.
doi:10.1109/JQE.2007.904306
21. Gioannini, M., A. Sevega, and I. Montrosset, "Simulations of di®erential gain and linewidth enhancement factor of quantum dot semiconductor lasers," Opt. Quantum Electron., Vol. 38, No. 4, 381-394, 2006.
doi:10.1007/s11082-006-0038-1
22. Farghal, A. E., S. Wageh, and A. E.-S. Abou-El-Azm, "The effect of electrode materials on the optical characteristics of infrared quantum dot-light emitting devices," Progress In Electromagnetics Research C, Vol. 19, 47-59, 2011.