Vol. 28

Latest Volume
All Volumes
All Issues
2013-01-04

Digitized Nonlinear Beam and Wave Interaction Theory of Traveling Wave Tube Amplifiers

By Weifeng Peng, Yu Lu Hu, Zan Cao, and Zhong-Hai Yang
Progress In Electromagnetics Research M, Vol. 28, 73-88, 2013
doi:10.2528/PIERM12120709

Abstract

To simulate the beam and wave interaction (BWI) of various types of traveling wave tube amplifiers (TWTAs), a digitized nonlinear theory has been developed with two features. Firstly, the digitized RF field profiles obtained from electromagnetic simulation software are applied to replace the analytical RF field profiles in TWTAs. Secondly, the relationship of energy conservation between the beam and RF fields is used to derive the RF field equations. Based on this nonlinear theory, onedimensional code has been constructed to predict the performances of TWTAs. Comparisons between the simulations and the experimental results for a K-band helix TWTA, a V-band coupled cavity (CC) TWTA and a W-band folded waveguide (FWG) TWTA are made and discussed to prove the validation of this nonlinear theory.

Citation


Weifeng Peng, Yu Lu Hu, Zan Cao, and Zhong-Hai Yang, "Digitized Nonlinear Beam and Wave Interaction Theory of Traveling Wave Tube Amplifiers," Progress In Electromagnetics Research M, Vol. 28, 73-88, 2013.
doi:10.2528/PIERM12120709
http://test.jpier.org/PIERM/pier.php?paper=12120709

References


    1. Pierce, J. R., Traveling Wave Tubes, D. Van Nostrand, New York, 1950.

    2. Rowe, J. E., Nonlinear Electron-Wave Interaction Phenomena, Academic Press, Inc., New York, 1965.

    3. Pierce, J. R. and L. M. Field, "Traveling-wave tubes," Proc. IRE, Vol. 35, 108-111, 1947.
    doi:10.1109/JRPROC.1947.226216

    4. Rowe, J. E., "A large-signal analysis of the traveling-wave amplifier: Theory and general results," IEEE Trans. Electron Dev., Vol. 3, No. 1, 39-56, 1956.

    5. Antonsen Jr., T. M., A. A. Mondelli, B. Levush, J. P. Verboncoeur, and C. K. Birdsall, "Advances in modeling and simulation of vacuum electronic devices," Proc. IEEE, Vol. 87, No. 5, 804-839, 1999.
    doi:10.1109/5.757256

    6. Antonsen Jr., T. M. and B. Levush, "Traveling-wave tube devices with nonlinear dielectric elements," IEEE Trans. Plasma Sci., Vol. 26, No. 3, 774-786, 1998.
    doi:10.1109/27.700830

    7. Chernin, D. P., T. M. Antonsen Jr., B. Levush, and D. R. Whaley, "A three-dimensional multifrequency large signal model for helix traveling wave tubes," IEEE Trans. Electron Dev., Vol. 48, No. 3, 3-11, 2001.
    doi:10.1109/16.892161

    8. Freund, H. P., E. G. Zaidman, and T. M. Antonsen Jr., "Theory of helix traveling wave tubes with dielectric and vane loading," Phys. of Plasmas, Vol. 3, No. 8, 3145-3161, 1996.
    doi:10.1063/1.871590

    9. Freund, H. P. and E. G. Zaidman, "Nonlinear theory of collective effects in helix traveling wave tubes," Phys. of Plasmas, Vol. 4, No. 6, 2292-2301, 1997.
    doi:10.1063/1.872393

    10. Freund, H. P. and E. G. Zaidman, "Time-dependent simulation of helix traveling wave tubes," Phys. of Plasmas, Vol. 7, No. 12, 5182-5194, 2000.
    doi:10.1063/1.1319338

    11. Srivastava, V., "SUNRAY-2.5D code for multi-signal large-signal analysis of a complete helix TWT," IEEE Int. Vacuum Electron. Conf., 303-304, Bangalore, India, 2011.

    12. Chernin, D. P., D. Dialetis, T. M. Antonsen Jr., J. Legarra, J. Qiu, and B. Levush, "Validation studies for CHRISTINE-CC using a Ka-band coupled-cavity TWT," IEEE Int. Vacuum Electron. Conf., 399-400, Nonterey, California, 2006.

    13. Chernin, D. P., T. M. Antonsen Jr., I. A. Chernyavskiy, A. N. Vlasov, B. Levush, R. Begum, and J. R. Legarra, "Large-signal multifrequency simulation of coupled-cavity TWTs," IEEE Trans. Electron Dev., Vol. 58, No. 4, 1229-1239, 2011.
    doi:10.1109/TED.2011.2106504

    14. Freund, H. P., T. M Antonsen., Jr., E. G. Zaidman, B. Levush, and J. Legarra, "Nonlinear time-domain analysis of coupled-cavity traveling-wave tubes," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 1024-1040, 2002.
    doi:10.1109/TPS.2002.802148

    15. Wallander, S. O., "Large signal analytical study of bunching in klystrons," IEEE Trans. Electron Dev., Vol. 15, No. 8, 595-603, Aug. 1968.
    doi:10.1109/T-ED.1968.16407

    16. Morwood, R. C. and F. I. Friedlander, "LSCEX3: A computer program for large signal analysis of klystrons, twystrons, and traveling wave tubes with cavity circuits,", Varian Associates Report, Dec. 1979.

    17. Vaughan, J. R., "Calculation of coupled-cavity TWT performance," IEEE Trans. Electron Dev., Vol. 22, No. 10, 880-890, Oct. 1975.
    doi:10.1109/T-ED.1975.18237

    18. Vlasov, A. N. , T. M. Antonsen, Jr, D. P. Chernin, B. Levush, and E. L. Wright, "Simulation of microwave devices with external cavities using MAGY," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 1277-1291, 2002.
    doi:10.1109/TPS.2002.801600

    19. Vlasov, A. N., S. J. Cooke, B. Levush, T. M. Antonsen Jr., I. A. Chernyavskiy, and D. Chernin, "Modeling of coupled cavity TWT with TESLA," Proc. Int. Conf. Vacuum Electron., 155-156, Rome, Italy, 2009.

    20. Vlasov, A. N., S. J. Cooke, B. Levush, T. M. Antonsen Jr., I. A. Chernyavskiy, and D. Chernin, "2D modeling of beam-wave interaction in coupled cavity TWTs with TESLA," Proc. Int. Conf. Vacuum Electron., 405-406, Monterey, CA, 2010.

    21. Goplen, B., L. Ludeking, D. Smithe, and G. Warren, "User con¯gurable MAGIC code for electromagnetic PIC calculations," Comput. Phys. Commun., Vol. 87, No. 1-2, 54-86, 1995.
    doi:10.1016/0010-4655(95)00010-D

    22. Ansoft HFSS, "3-D electromagnetic Simulation Software,", Ansoft Corp., Pittsburgh.

    23. Wilson, J. D. and C. L. Kory, "Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube," IEEE Trans. Electron Dev., Vol. 42, No. 11, 2015-2020, 1995.
    doi:10.1109/16.469412

    24. Hu, Y. F., J. J. Feng, J. Cai, Y. H. Du, Y. Tang, and X. P. Wu, "Performance enhancement of W-band CW TWT," IEEE Int. Vacuum Electron. Conf., 21-22, Bangalore, India, 2011.

    25. Morey, I. J. and C. K. Birdsall, "Traveling-wave-tube simulation: The IBC code," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 482-489, 1990.
    doi:10.1109/27.55918

    26. Booske, J. H., M. C. Converse, C. K. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes," IEEE Trans. Electron Dev., Vol. 52, No. 5, 685-694, 2005.
    doi:10.1109/TED.2005.845798

    27. Bernardi, P. , F. Andre, J. F. David, A. L. Clair, and F. Doveil, "Efficient time-domain simulations of a helix traveling-wave tube," IEEE Trans. Electron Dev., Vol. 58, No. 6, 1716-1767, 2011.
    doi:10.1109/TED.2011.2125793

    28. Freund, H. P., "Nonlinear theory of helix traveling wave tubes in the frequency domain," Phys. of Plasmas, Vol. 6, No. 9, 3633-3646, 1999.
    doi:10.1063/1.873622

    29. Hou, Y., J. Xu, H. R. Gong, Y. Y. Wei, L. N. Yue, G. Zhao, and Y. B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.

    30. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a v-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.
    doi:10.2528/PIER11092906

    31. Li, B., Z. H. Yang, J. Q. Li, X. F. Zhu, T. Huang, X. L. Jin, Q. Hu, Y. L. Hu, L. Xu, J. J. Ma, L. Liao L. Xiao, and G. X. He, Theory and design of microwave-tube simulator suite, Vol. 56, No. 5, 919-927, IEEE Trans. Electron Dev., 2009.

    32. Bai, C. J., J. Q. Li, Y. L. Hu, Z. H. Yang, and B. Li, "A nonlinear theory for coupled-cavity TWTs in beam-wave interaction," Int. Conf. Microwave and Millimeter Wave Tech., Vol. 5, 1-4, Chengdu, China, 2012.