In this paper, general solution for the electric and magnetic fields are developed using the vector potentials A and F when the wave is propagating in fractional dimensional space. Different field configurations can be analyzed using the developed expressions for electric and magnetic fields, here we have analyzed TEz and TMz modes when the wave propagates in fractional space inside a rectangular waveguide. It is observed that wave propagation behavior in fractional space changes substantially from the non-fractional space. It is also observed that the obtained results show generalization of the concept of solutions for wave propagation from integer to fractional space. As a special case, when all the dimensions are considered integer, then all classical results are recovered.
2. Sadallah, M. and S. I. Muslih, "Solution of the equations of motion for Einstein's field in fractional D dimensional space-time ," International Journal of Theoretical Physics, Vol. 48, No. 12, 3312-3318, 2009.
doi:10.1007/s10773-009-0133-8
3. Muslih, S. I. and O. P. Agrawal, "A scaling method and its applications to problems in fractional dimensional space," Journal of Mathematical Physics, Vol. 50, No. 12, 123501-1-123501-11, 2009.
doi:10.1063/1.3263940
4. Mandelbrot, B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.
5. Palmer, C. and P. N. Stavrinou, "Equations of motion in a noninteger-dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009
6. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Phys. Lett. A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974
7. Ashmore, J. F., "On renormalization and complex space-time dimensions," Commun. Math. Phys., Vol. 29, 177-187, 1973.
doi:10.1007/BF01645246
8. Tarasov, V. E., "Continuous medium model for fractal media," Physics Letters A, Vol. 336, No. 2-3, 167-174, 2005.
doi:10.1016/j.physleta.2005.01.024
9. Muslih, S. I. and D. Baleanu, "Fractional multipoles in fractional space," Nonlinear Analysis: Real World Applications, Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001
10. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Analysis: Real World Applications, Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058
11. Ostoja-Starzewski, M., "Electromagnetism on anisotropic fractal media," ZAMP, Vol. 64, No. 2, 381-390, 2013.
doi:10.1007/s00033-012-0230-z
12. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetic Research, Vol. 114, 255-269, 2011.
13. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "On electromagnetic wave propagation in fractional space," Nonlinear Analysis B: Real World Applications, Vol. 12, No. 5, 2844-2850, 2011.
doi:10.1016/j.nonrwa.2011.04.010
14. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
15. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the cylindrical wave equation for electromagnetic field n fractional dimensional space," Progress In Electromagnetics Research, Vol. 114, 443-455, 2011.
16. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of spherical wave in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications,, Vol. 25, No. 10, 1481-1491, 2011.
17. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "Electromagnetic fields and waves in fractional dimensional space," Springer Brifes in Applied Sciences and Technology, XII, 76, Springer, Germany, Jan. 28, 2012.
18. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.
19. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402
20. Mughal, M. J. and M. Zubair, "Fractional space solutions of antenna radiation problems: An application to hertzain dipole," IEEE 19th Conference on Signal Processing and Communications Applications (SIU), 62-65, Apr. 20-22, 2011, doi: 10.1109/SIU.2011.5929587.
21. Teng, H. T., H.-T. Ewe, and S. L. Tan, "Multifractal dimension and its geometrical terrain properties for classification of multi-band multi-polarised SAR image," Progress In Electromagnetics Research, Vol. 104, 221-237, 2010.
doi:10.2528/PIER10022001
22. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, K. Sayegrih, and P. Van Roy, "Metallized foams for antenna design: Application to fractal-shaped sierpinski-carpet monopole," Progress In Electromagnetics Research, Vol. 104, 239-251, 2010.
doi:10.2528/PIER10032003
23. Siakavara, K., "Novel fractal antenna arrays for satellite networks: Circular ring Sierpinski carpet arrays optimized by genetic algorithms," Progress In Electromagnetics Research, Vol. 103, 115-138, 2010.
doi:10.2528/PIER10020110
24. Karim, M. N. A., M. K. A. Rahim, H. A. Majid, O. B. Ayop, M. Abu, and F. Zubir, "Log periodic fractal koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.
doi:10.2528/PIER09110512
25. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.
26. Omar, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress In Electromagnetics Research, Vol. 28, 229-244, 2013.
27. Asad, H., M. Zubair, M. J. Mughal, and Q. A. Naqvi, "Electromagnetic green functions for fractional space," Journal of Electromagnetic Wave and Application,, Vol. 26, No. 14-15, 1903-1910, 2012.
doi:10.1080/09205071.2012.720748
28. Balankin, S. A., et al., "Electromagnetic fields in fractal continua," Physics Letters A, Vol. 377, 783-788, 2013.
doi:10.1016/j.physleta.2013.01.030