Vol. 33

Latest Volume
All Volumes
All Issues
2013-09-12

MOEA/D-GO for Fragmented Antenna Design

By Da-Wei Ding and Gang Wang
Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013
doi:10.2528/PIERM13071610

Abstract

In this paper, a hybrid multiobjective evolutionary algorithm, MOEA/D-GO (Multiobjective Evolutionary Algorithm Based on Decomposition combined with Enhanced Genetic Operators), is proposed for fragment-type antenna design. It combines the ability and efficiency of MOEA/D to deal with multiobjective optimization problems with the speci c character of two-dimensional chromosome coding of genetic algorithm. And enhanced genetic operators are also introduced to generate new individuals. Numerical results of a set of six multiobjective 0/1 knapsack problems show that MOEA/D-GO with weighted sum decomposition approach outperforms original MOEA/D and MOEA/D-PR (MOEA/D combined with Path-Relinking operator). Then it's applied to optimize a CPW-fed monopole antenna to achieve band-notch characteristic. Both numerical and test results show that MOEA/D-GO is promising for solving multiobjective optimization problems about fragmented antenna.

Citation


Da-Wei Ding and Gang Wang, "MOEA/D-GO for Fragmented Antenna Design," Progress In Electromagnetics Research M, Vol. 33, 1-15, 2013.
doi:10.2528/PIERM13071610
http://test.jpier.org/PIERM/pier.php?paper=13071610

References


    1. Marler, R. T. and J. S. Arora, "Survey of multiobjective optimization methods for engineering," Structural Multidisciplinary Opt., Vol. 26, No. 6, 369-395, 2004.
    doi:10.1007/s00158-003-0368-6

    2. Jin, Z. S., H. Yang, X. J. Tang, and J. J. Mao, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," 2010 Third International Joint Conference on Computational Science and Optimization (CSO), Vol. 2, 259-262, Huangshan, China, 2010.
    doi:10.1109/CSO.2010.100

    3. Kim, G. J. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," IEEE Antennas and Propagation Society International Symposium 2006, 2087-2090, Albuquerque, NM, 2006.

    4. Jon, M. and M. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas and Wireless Propagation Letters 2006, Vol. 6, 447-449, 2007.
    doi:10.1109/LAWP.2007.891962

    5. Herscovici, N., J. Ginn, T. Donisi, and B. Tomasic, "A fragmented aperture-coupled microstrip antenna," IEEE Antennas and Propagation Society International Symposium 2008, 1-4, San Diego, 2008.

    6. Thors, B., H. Steyskal, and H. Holter, "Broad-band fragmented aperture phased array element design using genetic algorithms," IEEE Trans. on Antennas and Propag., Vol. 53, No. 10, 3280-3287, 2005.
    doi:10.1109/TAP.2005.856340

    7. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. on Antennas Propag., Vol. 52, No. 6, 1434-1445, 2004.
    doi:10.1109/TAP.2004.825648

    8. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Trans. on Antennas and Propag., Vol. 52, No. 11, 2925-2931, 2004.
    doi:10.1109/TAP.2004.835289

    9. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Trans. on Antennas and Propag., Vol. 53, No. 6, 1939-1945, 2005.
    doi:10.1109/TAP.2005.848461

    10. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Minimization of a rectangular patch using genetic algorithms," IEEE Antennas and Propagation Society Intelnational Symposium, Vol. 4, 1-4, Boston, MA, 2001.

    11. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electronics Letters, Vol. 36, No. 25, 2057-2058, 2000.
    doi:10.1049/el:20001452

    12. Wang, X. P. and L. M. Cao, Genetic Algorithms-theory, Application and Program Realization, University of Xi'an Jiao Tong Press, Xi'an, 2002.

    13. Kerkhoff, A. J., "Multi-objective optimization of antennas for ultra-wideband applications,", The University of Texas at Austin, May 2008.

    14. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. on Evol. Comput., Vol. 11, No. 6, 712-731, 2007.
    doi:10.1109/TEVC.2007.892759

    15. Li, H. and H. Zhang, "Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II," IEEE Trans. on Evol. Comput., Vol. 13, No. 2, 284-302, 2009.
    doi:10.1109/TEVC.2008.925798

    16. Ishibuchi, H., Y. Sakane, N. Tsukamoto, and Y. Nojima, "Evolutionary many-objective optimization by NSGA-II and MOEA/D with large population," Proc. 2009 Int. Conf. Systems, Man, and Cybernetics, San Autonio, 1758-1763, San Antonio, TX, 2009.

    17. Kafafy, A., A. Bounekkar, and S. Bonnevay, "Hybrid metaheuristics based on MOEA/D for 0/1 multiobjective knapsack problems: A comparative study," 2012 IEEE Congress on Evolutionary Computation (CEC), Vol. 1, No. 8, 10-15, 2012.

    18. Ding, D., H. Wang, and G. Wang, "Evolutionary computation of multi-band antenna using multi-objective evolutionary algorithm based on decomposition," Lecture Notes in Computer Science (2011 LNCS), Vol. 7030, 383-390, 2011.
    doi:10.1007/978-3-642-25255-6_49

    19. Ding, D. and G. Wang, "Modified multiobjective evolutionary algorithm based on decomposition for antenna design," IEEE Trans. on Antennas and Propag., Vol. PP, No. 99, 2013.

    20. Carvalho, R., R. R. Saldanha, B. N. Gomes, A. C. Lisboa, and A. X. Martins, "A multi-objective evolutionary algorithm based on decomposition for optimal design of Yagi-Uda antennas," IEEE Trans. on Magnetics, Vol. 48, No. 2, 803-806, 2012.
    doi:10.1109/TMAG.2011.2174348

    21. Pal, S., B. Y. Qu, S. Das, and P. N. Suganthan, "Optimal synthesis of linear antenna arrays with multiobjective differential evolution," Progress In Electromagnetics Research B, Vol. 21, 87-111, 2010.

    22. Zitzler, E. and L. Thiele, "Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach," IEEE Trans. on Evol. Comput., Vol. 3, No. 4, 257-271, 1999.
    doi:10.1109/4235.797969

    23. Jaszkiewicz, A., "On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - A comparative exper iment," IEEE Trans. on Evol. Comput., Vol. 6, No. 4, 402-412, 2002.
    doi:10.1109/TEVC.2002.802873

    24. Tong, W. and Z. R. Hu, "A CWP fed circular monopole antenna for ultra wideband wireless communications," IEEE Antennas and Propagation Society International Symposium 2005, Vol. 3A, 528-531, 2005.
    doi:10.1109/APS.2005.1552304