Vol. 33

Latest Volume
All Volumes
All Issues
2013-09-28

Experimental Results for Microwave Tomography Imaging Based on FDTD and GA

By Abas Sabouni and Sima Noghanian
Progress In Electromagnetics Research M, Vol. 33, 69-82, 2013
doi:10.2528/PIERM13080610

Abstract

The authors recently presented a novel microwave tomography method for creating quantitative images of the electromagnetic properties of the interior of unknown objects [1]. This method is based on a time-domain inverse solver which uses the multi-illumination technique and includes the dispersive and heterogeneous characteristic of the object. The Frequency Dependent Finite Difference Time Domain ((FD)2TD) and Genetic Algorithm (GA) technique were utilized for determining unknown characteristics of the object. In the present paper, the calibration of measured data are described and image reconstruction results for preliminary experiments performed at the University of Manitoba's Microwave Tomography Laboratory and at the Institut Frsenel are presented.

Citation


Abas Sabouni and Sima Noghanian, "Experimental Results for Microwave Tomography Imaging Based on FDTD and GA," Progress In Electromagnetics Research M, Vol. 33, 69-82, 2013.
doi:10.2528/PIERM13080610
http://test.jpier.org/PIERM/pier.php?paper=13080610

References


    1. Sabouni, A., S. Noghanian, and S. Pistorius, "A global optimization technique for microwave imaging of the inhomogeneous and dispersive breast," Canadian Journal of Electrical and Computer Engineering, Vol. 35, No. 1, 15-24, 2010.
    doi:10.1109/CJECE.2010.5783380

    2. Pastorino, M., S. Caorsi, and A. Massa, "A global optimization technique for microwave nondestructive evaluation," IEEE Transactions on Instrumentation and Measurement, Vol. 51, No. 4, 666-673, 2002.
    doi:10.1109/TIM.2002.803084

    3. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
    doi:10.1016/j.acra.2006.10.016

    4. Song, L. P., C. Yu, and Q. H. Liu, "Through-wall imaging (TWI) by radar: 2-D tomographic results and analyses," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 12, 2793-2798, 2005.
    doi:10.1109/TGRS.2005.857914

    5. Hansen, P. C., Rank-deficient and Discrete Ill-posed Problems Numerical Aspects of Linear Inversion:, SIAM, Philadelphia, PA, 1998.
    doi:10.1137/1.9780898719697

    6. Barkeshli, S. and R. G. Lautzenheiser, "An iterative method for inverse scattering problems based on an exact gradient search," Radio Science, Vol. 29, 1119-1130, 1994.
    doi:10.1029/94RS00830

    7. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," Journal of Computational and Applied Mathematics, Vol. 42, No. 1, 17-35, 1992.
    doi:10.1016/0377-0427(92)90160-Y

    8. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, No. 6, 1607-1620, 1997.
    doi:10.1088/0266-5611/13/6/013

    9. Chew, W. and Y. Wang, "Reconstruction of two-dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, No. 2, 218-225, 1990.
    doi:10.1109/42.56334

    10. Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 4, 1217-1228, 2004.
    doi:10.1109/TMTT.2004.825699

    11. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
    doi:10.2528/PIER03100702

    12. Bozza, G., C. Estatico, M. Pastorino, and A. Randazzo, "An inexact newton method for microwave reconstruction of strong scatterers," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 61-64, 2006.
    doi:10.1109/LAWP.2006.870360

    13. Franchois, A. and A. G. Tijhuis, "A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment," Radio Science, Vol. 38, No. 2, 1-13, 2003.
    doi:10.1029/2001RS002590

    14. Joachimowicz, N., J. Mallorqui, J. C. Bolomey, and A. Broquets, "Convergence and stability assessment of Newton-Kantorovich reconstruction algorithms for microwave tomography," IEEE Transactions on Medical Imaging, Vol. 17, No. 4, 562-570, 1998.
    doi:10.1109/42.730401

    14. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 203-215, 1997.
    doi:10.1109/8.560338

    16. Pastorino, M., "Stochastic optimization methods applied to microwave imaging: A review," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 538-548, 2007.
    doi:10.1109/TAP.2007.891568

    17. Caorsi, S., A. Massa, M. Pastorino, and M. Donelli, "Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1386-1397, 2004.
    doi:10.1109/TAP.2004.830254

    18. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
    doi:10.1109/TMTT.2005.847068

    19. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, 298-312, 2006.
    doi:10.1109/TGRS.2005.861412

    20. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 894-904, 2010.
    doi:10.1109/TBME.2009.2036372

    21. Meaney, P., K. Paulsen, A. Hartov, and R. Crane, "An active microwave imaging system for reconstruction of 2-D electrical property distributions," IEEE Transactions on Biomedical Engineering, Vol. 42, No. 10, 1017-1026, 1995.
    doi:10.1109/10.464376

    22. Eyraud, C., J. M. Geffrin, A. Litman, P. Sabouroux, and H. Giovannini, "Drift correction for scattering measurements," Applied Physics Letters, Vol. 89, 2441041-2441043, 2006.

    23. Kolundzija, B., J. Ognjanovic, M. Tasic, D. Olcan, M. Paramentic, D. Sumic, M. Kostic, and M. Paviovic, "WIPL-D pro V7.1: 3D electromagnetic solver," Tech. Rep., WIPL-D Ltd, Europe, 2009.

    24. Meaney, P., M. Fanning, D. Li, S. Poplack, and K. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1841-1853, 2000.
    doi:10.1109/22.883861

    25. Geffrin, J. and A. Joisel, "Comparison of measured and simulated incident and scattered ¯elds in a 434MHz scanner," Proceedings of the 22th URSI General Assembly, 2002.

    26. Gunnarsson, T., "Quantitative microwave breast phantom imaging using 2.45 GHz system," International Union of Radio Science General Assembly, 2008.

    27. Geffrin, J. M., P. Sabouroux, and C. Eyraud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Problems, Vol. 21, S117-S130, 2005.
    doi:10.1088/0266-5611/21/6/S09

    28. Franchois, A., A. Joisel, C. Pichot, and J. C. Bolomey, "Quantitative microwave imaging with a 2.45 GHz planar microwave camera," IEEE Transactions on Medical Imaging, Vol. 17, No. 4, 550-561, 1998.
    doi:10.1109/42.730400

    29. Belkebir, K. and M. Saillard, "Special section on testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.
    doi:10.1088/0266-5611/17/6/301

    30. Meaney, P., K. Paulsen, A. Hartov, and R. Crane, "Microwave imaging for tissue assessment: Initial evaluation in multitarget tissue-equivalent phantoms," IEEE Transactions on Biomedical Engineering, Vol. 43, 878-890, 1996.
    doi:10.1109/10.532122

    31. Semenov, S., R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, and G. Tatsis, "Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction-experimental study on two-dimensional models," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 538-544, 2000.
    doi:10.1109/22.842025