Vol. 38

Latest Volume
All Volumes
All Issues
2014-08-13

Photonic Analysis of Semiconductor Fibonacci Superlattices: Properties and Applications

By Hadi Rahimi
Progress In Electromagnetics Research M, Vol. 38, 25-35, 2014
doi:10.2528/PIERM14070902

Abstract

In this paper, we theoretically study the phase treatment of reflected waves in one-dimensional Fibonacci photonic quasicrystals composed of nano-scale fullerene and semiconductor layers. The dependence of the phase shift of reflected waves for TE mode and TM mode on the wavelength and incident angle is calculated by using the theoretical model based on the transfer matrix method in the infrared wavelength region. In the band gaps of supposed structures, it is found that the phase shift of reflected wave changes more slowly than within the transmission band gaps. Furthermore, the phase shift decreases with the incident angle increasing for TE mode, and increases with the incident angle increasing for TM mode. Also, for the supposed structures it is found that there is a band gap which is insensitive to the order of the Fibonacci sequence. These structures open a promising way to fabricate subwavelength tunable phase compensators, very compact wave plates and phase-sensitive interferometry for TE and TM waves.

Citation


Hadi Rahimi, "Photonic Analysis of Semiconductor Fibonacci Superlattices: Properties and Applications," Progress In Electromagnetics Research M, Vol. 38, 25-35, 2014.
doi:10.2528/PIERM14070902
http://test.jpier.org/PIERM/pier.php?paper=14070902

References


    1. Shechtman, D., I. Blech, D. Gratias, and J. W. Cahn, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett., Vol. 53, 1951, 1984.
    doi:10.1103/PhysRevLett.53.1951

    2. Janot, C., Quasicrystals, Clarendon Press, Oxford, 1994.

    3. Sheng, P., Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, Academic Press, New York, 1995.

    4. Zoorob, M. E., M. D. Charlton, G. J. Parker, and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature, Vol. 404, 740, 2000.
    doi:10.1038/35008023

    5. Albuquerque, E. L. and M. G. Cottam, Polaritons in Periodic and Quasiperiodic Structures, Elsevier, Amsterdam, 2004.

    6. Luck, J. M., C. Godreche, A. Janner, and T. Janssen, "The nature of the atomic surfaces of quasiperiodic self-similar structures," J. Phys. A, Vol. 26, 1951, 1993.
    doi:10.1088/0305-4470/26/8/020

    7. Boyd, R. W., Nonlinear Optics, Academic Press, Boston, 2008.

    8. Zhu, S., Y. Y. Zhu, and N. B. Ming, "Quasi-phase-matched third-harmonic generation in a quasiperiodic optical superlattice," Science, Vol. 278, 843, 1997.
    doi:10.1126/science.278.5339.843

    9. Macia, E., "Optical applications of fibonacci dielectric multilayers," Ferroelectrics, Vol. 250, 401, 2001.
    doi:10.1080/00150190108225111

    10. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic onedimensional generalized multilayer Fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
    doi:10.2528/PIER05091701

    11. Cojocaru, E., "Omnidirectional reflection from finite periodic and fibonacci quasi-periodic multilayers of alternating isotropic and birefringent thin films," Appl. Opt., Vol. 41, 747, 2002.
    doi:10.1364/AO.41.000747

    12. Zhang, H., S. Liu, X. Kong, B. Bian, and Y. Dai, "Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals," Solid State Commun., Vol. 152, 2113, 2012.
    doi:10.1016/j.ssc.2012.09.009

    13. Zhang, H., J. Zhen, and W. He, "Omnidirectional photonic band gaps enhanced by Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals," Optik, Vol. 124, 4182, 2013.
    doi:10.1016/j.ijleo.2012.12.047

    14. Kratschmer, W., L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "Solid C60: A new form of carbon," Nature, Vol. 347, 354-358, 1990.
    doi:10.1038/347354a0

    15. Rosseinsky, M. J., A. P. Ramirez, S. H. Glarum, D. W. Murphy, R. C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. Zahurak, and A. V. Makhija, "Superconductivity at 28K in RbxC60," Phys. Rev. Lett., Vol. 66, 2830-2832, 1991.
    doi:10.1103/PhysRevLett.66.2830

    16. Taigaki, K., I. Hirosawa, T. W. Ebbsen, J. Mizuki, Y. Shimakawa, Y. Kubo, J. S. Tsai, and S. Kuroshima, "Superconductivity in sodium and lithium containing alkali-metal fullerides," Nature, Vol. 356, 419-421, 1992.
    doi:10.1038/356419a0

    17. Hiromichi, K. H., E. Y. Yasushi, A. Y. Yohji, K. K. Koichi, H. T. Takaaki, and Y. S. Shigeo, "Dielectric constants of C60 and C70 thin films," J. Phys. Chem. Solids, Vol. 58, 1923, 1997.

    18. Haddon, R. C., "Conducting films of C60 and C70 by alkali metal doping," Nature, Vol. 350, 320-322, 1991.
    doi:10.1038/350320a0

    19. Xiong, Z. W., F. Jiang, and X. R. Chen, "Structural and optical properties of fullerenelike amorphous carbon with embedded dual-metal nanoparticles," J. of Alloys and Compounds, Vol. 574, No. 13, 2013.

    20. Akkurt, F., "Laser induced electro-optical characterization of anthraquinone dye and fullerene C60 doped guest-host liquid crystal systems," J. of Molecular Liquids, Vol. 194, 241, 2014.
    doi:10.1016/j.molliq.2014.02.040

    21. Makarova, T. L., V. G. Melekhin, I. T. Serenkov, V. I. Sakharov, I. B. Zakharova, and V. E. Gasumyants, "Optical and electrical properties of C60Tex films," Phys. the Solid State, Vol. 43, 1393, 2001.
    doi:10.1134/1.1386485

    22. Xu, H., D. M. Chen, and W. N. Creager, "C60-induced reconstruction of the Ge(111) surface," Phys. Rev. B, Vol. 50, 8454, 1994.
    doi:10.1103/PhysRevB.50.8454

    23. Xu, Q., et al., "C60 single crystal films on GaAs (001) surfaces," Thin Solid Films, Vol. 281, 618, 1996.
    doi:10.1016/0040-6090(96)08710-X

    24. Giudice, E., et al., "Morphology of C60 thin films grown on Ag (001)," Surf. Sci. Lett., Vol. 405, 561, 1998.
    doi:10.1016/S0039-6028(98)00171-X

    25. Peide, H., X. Bingshe, L. Jian, L. Xuguang, and H. BaoBand, "Band gaps of two-dimensional photonic crystal structure using fullerene films," Physica E, Vol. 25, 29, 2004.

    26. Bingshe, X., H. Peide, L. Jian, L. Xuguang, and C. Mingwei, "Optical properties in 2D photonic crystal structure using fullerene and azafullerene thin films," Opt. Commun., Vol. 250, 120, 2005.
    doi:10.1016/j.optcom.2005.02.017

    27. Bingshe, X., H. Peide, L. Jian, B. Huiqiang, C. Mingwei, and H. Ichinose, "Theoretical investigation of the reflectivity of fullerene-(C60, C70)/AlN multilayers in UV region," Solid State Commun., Vol. 133, 353, 2005.
    doi:10.1016/j.ssc.2004.11.041

    28. Won-Chun, O. and K. Weon-Bae, "Characterization and photonic properties for the Ptfullerene/TiO2 composites derived from titanium (IV) n-butoxide and C60," J. of Industrial and Engineering Chemistry, Vol. 15, 791-797, 2009.

    29. Wu, C., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," J. Electromagn. Waves Appl., Vol. 19, 1991-1996, 2006.

    30. Merlin, R., K. Bajema, R. Clarke, and F. Juang, "Quasiperiodic GaAs-AlAs Heterostructures," Phys. Rev. Lett., Vol. 55, 1768, 1985.
    doi:10.1103/PhysRevLett.55.1768

    31. Albuquerque, E. L. and M. G. Cottam, "Theory of elementary excitations in quasiperiodic structure," Physics Reports, Vol. 376, 225-237, 2003.
    doi:10.1016/S0370-1573(02)00559-8

    32. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.