Vol. 38

Latest Volume
All Volumes
All Issues
2014-09-26

Absorption Coefficient in a Mqw Intersubband Photodetector with Non-Uniform Doping Density & Layer Distribution

By Kasturi Mukherjee and Nikhil Ranjan Das
Progress In Electromagnetics Research M, Vol. 38, 193-201, 2014
doi:10.2528/PIERM14081903

Abstract

Selective wavelength tuning of multiple quantum well based infrared photodetector is achieved by nonuniform doping distribution as well as dimensional variation in the structure. Result is obtained from the computation of the intersubband transition energy through self-consistent solution of the Poisson's and Schrödinger equations with appropriate boundary conditions. Absorption coefficient is estimated in presence of external electric field applied along the direction of confinement. Suitable choice of structural parameters is required to tailor the peak position of absorption spectra for application in the infrared range as optical receiver.

Citation


Kasturi Mukherjee and Nikhil Ranjan Das, "Absorption Coefficient in a Mqw Intersubband Photodetector with Non-Uniform Doping Density & Layer Distribution," Progress In Electromagnetics Research M, Vol. 38, 193-201, 2014.
doi:10.2528/PIERM14081903
http://test.jpier.org/PIERM/pier.php?paper=14081903

References


    1. Manasreh, M. O., Semiconductor Quantum Wells and Superlattices for Long-wavelength Infrared Detectors, Artech House, Boston, MA, 1993.

    2. Davies, J. H., The Physics of Low-dimensional Semiconductors: An Introduction, Cambridge University Press, Cambridge , 1998.

    3. Basu, P. K., Theory of Optical Processes in Semiconductors: Bulk and Microstructures, Clarendon Press, 2003.
    doi:10.1093/acprof:oso/9780198526209.001.0001

    4. Levine, B. F., "Quantum-well infrared photodetectors," Journal of Applied Physics, Vol. 74, No. 8, R1, 1993.
    doi:10.1063/1.354252

    5. Cen, L. B., B. Shen, Z. X. Qin, and G. Y. Zhang, "Near-infrared two-color intersubband transitions in AlN /GaN coupled double quantum wells," Journal of Applied Physics, Vol. 105, No. 5, 053106, 2009.
    doi:10.1063/1.3091280

    6. Jdidi, A., N. Sfina, S. A. Nassrallah, M. Said, and J. L. Lazzari, "A multi-color quantum well photodetector for mid- and long-wavelength infrared detection," Semiconductor Science & Technology, Vol. 26, No. 12, 125019, 2011.
    doi:10.1088/0268-1242/26/12/125019

    7. Fauci, M. A., R. Breiter, W. Cabanski, W. Fick, R. Koch, J. Zeigler, and S. D. Gunapala, "Medical infrared imaging --- Differentiating facts from fiction, and the impact of high precision quantum well infrared photodetector camera systems, and other factors, in its reemergence," Infrared Physics & Technology, Vol. 42, No. 3-5, 337-344, 2001.
    doi:10.1016/S1350-4495(01)00093-7

    8. Eker, S. U., M. Kaldirim, Y. Arslan, and C. Besikci, "Large-format voltage-tunable dual-band quantum-well infrared photodetector focal plane array for third-generation thermal imagers," IEEE Electron Device Letters, Vol. 29, No. 10, 1121-1123, 2008.
    doi:10.1109/LED.2008.2002538

    9. Zhou, T., R. Zhang, X. G. Guo, and Z. Y. Tan, "Terahertz imaging with quantum well photodetectors," IEEE Photonics Technology Letters, Vol. 24, No. 13, 1109-1111, 2012.
    doi:10.1109/LPT.2012.2196033

    10. Gunapala, S. D., B. F. Levine, L. Pfeiffer, and K. West, "Dependence of the performance of GaAs/AlGaAs quantum well infrared photodetectors on doping and bias," Journal of Applied Physics, Vol. 69, No. 9, 6517-6520, 1991.
    doi:10.1063/1.348861

    11. Yang, Y., H. C. Liu, W. Z. Shen, N. Li, W. Lu, Z. R. Wasilewski, and M. Buchanan, "Optimal doping density for quantum-well infrared photodetector performance," IEEE Journal of Quantum Electronics, Vol. 45, No. 6, 623-628, 2009.
    doi:10.1109/JQE.2009.2013119

    12. Steele, A. G., H. C. Liu, M. Buchanan, and Z. R. Wasilewski, "Importance of the upper state position in the performance of quantum well intersubband infrared detectors," Applied Physics Letters, Vol. 59, No. 27, 3625-3627, 1991.
    doi:10.1063/1.106379

    13. Steele, A. G., H. C. Liu, M. Buchanan, and Z. R. Wasilewski, "Influence of the number of wells in the performance of multiple quantum well intersubband infrared detectors," Journal of Applied Physics, Vol. 72, No. 3, 1062-1064, 1992.
    doi:10.1063/1.351833

    14. Liu, H. C., G. C. Aers, M. Buchanan, Z. R. Wasilewski, and D. Landheer, "Intersubband photocurrent from the quantum well of an asymmetrical double-barrier structure," Journal of Applied Physics, Vol. 70, No. 2, 935-940, 1991.
    doi:10.1063/1.349602

    15. Ting, D. Z.-Y., C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, "A high-performance long-wavelength superlattice complementary barrier infrared detector," Applied Physics Letters, Vol. 95, No. 2, 023508, 2009.
    doi:10.1063/1.3177333

    16. Machhadani, H., Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli, J. Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, and F. H. Julien, "Terahertz intersubband absorption in GaN/AlGaN step quantum wells," Applied Physics Letters, Vol. 97, No. 19, 191101, 2010.
    doi:10.1063/1.3515423

    17. Manasreh, O., Semiconductor Heterojunctions and Nanostructures, McGraw-Hill, New York, 2005.