An intentional focusing of High-Power Microwave (HPM) energy on microelectronic systems can produce effects that will potentially upset or damage the target. However, the physical mechanisms at work within the device are not often well understood. We provide a detailed understanding of the physical mechanisms involved in a common-source Metal Oxide Semiconductor (MOS) transistor inverter when Pulsed Microwave Excitation (PME) in a frequency range from 10 MHz to 1 GHz is applied on the gate terminal. Our study is based on the measurements of the current waveforms on all transistor access and explains the MOS response with and without the Radio-Frequency (RF) interference.
2. Backstrom, M. and K. Lovstrand, "Susceptibility of electronic systems to high-power microwaves: Summary of test experience," IEEE Trans. Electromagn. Compat., Vol. 46, No. 3, 396-403, 2004.
doi:10.1109/TEMC.2004.831814
3. Hwang, S.-M., J.-I. Hong, and C.-S. Huh, "Characterization of the susceptibility of integrated circuits with induction caused by high power microwaves," Progress In Electromagnetics Research, Vol. 81, 61-72, 2008.
doi:10.2528/PIER07121704
4. Wang, H., J. Li, H. Li, K. Xiao, and H. Chen, "Experimental study and spice simulation of CMOS inverters latch-up effects due to high power microwave interference," Progress In Electromagnetics Research, Vol. 87, 313-330, 2008.
doi:10.2528/PIER08100408
5. Tsai, H.-C., "Reliable study of digital IC circuits with margin voltage among variable DC power supply, electromagnetic interference and conducting wire antenna," Microelectron. Reliab., Vol. 43, No. 12, 2001-2009, 2003.
doi:10.1016/j.microrel.2003.08.010
6. Forcier, M. and R. Richardson, "Microwave-rectification RFI response in field-effect transistors," IEEE Trans. Electromagn. Compat., Vol. 21, No. 4, 312-315, 1979.
doi:10.1109/TEMC.1979.303772
7. Richardson, R., "Quiescent operating point shift in bipolar transistors with AC excitation," IEEE J. of Solid-State Cir., Vol. 14, No. 6, 1087-1094, 1979.
doi:10.1109/JSSC.1979.1051320
8. Richardson, R., "Modeling of low-level rectification RFI in bipolar circuitry," IEEE Trans. Electromagn. Compat., Vol. 21, No. 4, 307-311, 1979.
doi:10.1109/TEMC.1979.303771
9. Richardson, R., V. Puglielli, and R. A. Amadori, "Microwave interference effect in bipolar transistors," IEEE Trans. Electromagn. Compat., Vol. 17, No. 4, 216-219, 1975.
doi:10.1109/TEMC.1975.303426
10. Jović, O., C. Maier, and A. Barić, "High-voltage PMOS transistor model for prediction of susceptibility to conducted interference," IEEE Trans. Electromagn. Compat., Vol. 53, No. 1, 53-62, 2011.
doi:10.1109/TEMC.2010.2076817
11. Pouant, C., J. Raoult, and P. Hoffmann, "Large domain validity of MOSFET microwave-rectification response," IEEE 10th International Electromagnetic Compatibility of Integrated Circuits, 232-237, 2015.
12. Holloway, M., Z. Dilli, N. Seekhao, and J. Rodgers, "Study of basic effects of HPM pulses in digital CMOS integrated circuit inputs," IEEE Trans. Electromagn. Compat., Vol. 54, No. 5, 1017-1027, 2012.
doi:10.1109/TEMC.2012.2188720
13. Op’t Land, S. T., M. Ramdani, R. Perdriau, M. Leone, and M. Drissi, "Simple, Taylor-based worst-case model for field-to-line coupling," Progress In Electromagnetics Research, Vol. 140, 297-311, 2013.
doi:10.2528/PIER13041207
14. Sicard, E. and J. Dienot, "Issues in electromagnetic compatibility of integrated circuits: Emission and susceptibility," Microelectron. Reliab., Vol. 45, No. 9, 1277-1284, 2005.
doi:10.1016/j.microrel.2005.07.057
15. Tsividis, Y. and C. McAndrew, Operation and Modeling of the MOS Transistor, Oxford Univ. Press, 2011.
16. Cheng, Y., M. Deen, and C.-H. Chen, "MOSFET modeling for RF IC design," IEEE Trans. Elect. Dev., Vol. 52, No. 7, 1286-1303, 2005.
doi:10.1109/TED.2005.850656
17. Kwon, I., M. Je, K. Lee, and H. Shin, "A simple and analytical parameter-extraction method of a microwave MOSFET," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 6, 1503-1509, 2002.
doi:10.1109/TMTT.2002.1006411