Vol. 64

Latest Volume
All Volumes
All Issues
2018-01-17

Meissner Effect in Classical Physics

By Kjell Ake Prytz
Progress In Electromagnetics Research M, Vol. 64, 1-7, 2018
doi:10.2528/PIERM17092702

Abstract

The Meissner effect is explored based on the acceleration-dependent component of the Weber force. According to the Maxwell theory, a steady circulating current does not produce any dynamics on external resting charges; however, according to the Weber theory, the charges of the circulating current exhibit a centripetal acceleration, which affects the external charges at rest. It is demonstrated that the current generated in this manner can explain the Meissner effect in classical physics.

Citation


Kjell Ake Prytz, "Meissner Effect in Classical Physics," Progress In Electromagnetics Research M, Vol. 64, 1-7, 2018.
doi:10.2528/PIERM17092702
http://test.jpier.org/PIERM/pier.php?paper=17092702

References


    1. Essen, H. and M. Fiolhais, "Meissner effect, diamagnetism, and classical physics: A review," Am. J. Phys., Vol. 80, 164, 2012.
    doi:10.1119/1.3662027

    2. Szeftel, J., N. Sandeau, and A. Khater, "Study of the skin effect in superconducting materials," Phys. Lett. A, Vol. 381, 1525, 2017.
    doi:10.1016/j.physleta.2017.02.051

    3. De Gennes, P. G., Superconductivity of Metals and Alloys, 47, Perseus books, Reading, Massachusetts, 1999.

    4. Nikulov, A., "The Meissner effect puzzle and the quantum force in superconductor," Physics Letters A, Vol. 376, 3392, 2012.
    doi:10.1016/j.physleta.2012.09.028

    5. Weber, W., Elektrodynamische Massbestimmungen uber ein allgemeines Grundgesetz der elektrischen Wirkung, Vol. 3, 25, Werke, Julius Springer, 1893.

    6. Weber, W., "Elektrodynamische massbestimmungen uber ein allgemeines Grundgesetz derelek-trischen Wirkung," Ann. Phys.-Berlin, Vol. 73, 193, 1848.

    7. Weber, W., "Determinations of electrodynamic measure: concerning a universal law of electrical action," 21st Century Science and Technology, English translation by S. P. Johnson, edited by L. Hecht and A. K. T. Assis, 2007, Available in PDF at: http://www.21stcenturysciencetech.com/translation.html.

    8. Weber, W., "On the measurement of electro-dynamic forces," Scientific Memoirs, R. Taylor, Ed., Vol. 5, 489-529, Johnson Reprint Corporation, New York, 1966.

    9. Moon, P. and D. Spencer, "Interpretation of the ampre experiments," Journal of Franklin Institute, Vol. 257, 203, 1954.
    doi:10.1016/0016-0032(54)90578-5

    10. Moon, P. and D. Spencer, "A postulational approach to electromagnetism," Journal of Franklin Institute, Vol. 259, 293, 1955.
    doi:10.1016/0016-0032(55)90638-4

    11. Moon, P. and D. Spencer, "On electromagnetic induction," Journal of Franklin Institute, Vol. 260, 213, 1955.
    doi:10.1016/0016-0032(55)90735-3

    12. Moon, P. and D. Spencer, "Electromagnetism without magnetism: An historical sketch," Am. Journal of Physics, Vol. 22, 120, 1954.
    doi:10.1119/1.1933645

    13. Assis, A. K. T., Weber’s Electrodynamics, Kluwer Academic Publ., 1994.
    doi:10.1007/978-94-017-3670-1

    14. Assis, A. K. T. and M. Tajmar, "Superconductivity with Weber’s electrodynamics: The London moment and the meissner effect," Annales de la Fondation Louis de Broglie, Vol. 42, No. 2, 2017.

    15. Meissner, W. and R. Ochsenfeld, "Ein neuer Effekt bei eintritt der Supraleitfahigkeit," Naturwissen, Vol. 21, 787, 1933.
    doi:10.1007/BF01504252

    16. Arkadiev, V., "A floating magnet," Nature, Vol. 160, 330, 1947.
    doi:10.1038/160330a0

    17. Crooks, M. J., "Floating magnets and the meissner effect," Am. J. Phys., Vol. 39, 113, 1971.
    doi:10.1119/1.1976729

    18. London, H. and F. London, "The electromagnetic equations of the supraconductor," Proc. Roy. Soc., Vol. A149, 71, London, 1935; ``Supraleitung und diamagnetismus,'' Physica, Vol. 2, 341, 1935.

    19. Bardeen, J., L. N. Cooper, and J. R. Schrieffer, "Theory of superconductivity," Phys. Rev., Vol. 108, 1175, 1957.
    doi:10.1103/PhysRev.108.1175

    20. Neumann, F., "Allgemeine gesetz der inducierten electrischen strome," Phys. Abh. Akad. Wiss., 1, Berlin, 1845.

    21. Prytz, K., Electrodynamics: The Field Free Approach, Chapter 11, Springer Verlag, 2015.

    22. Smith, R. T., F. P. M. Jjunju, and S. Maher, "Evaluation of electron beam deflections across a solenoid using Weber-Ritz and Maxwell-Lorentz electrodynamics," Progress In Electromagnetics Research, Vol. 151, 83, 2015.
    doi:10.2528/PIER15021106

    23. Einstein, A., The Meaning of Relativity, 1st Ed., Methuen & Co Ltd., 1922; 6th Edition, Chapman and Hall, 1956.

    24. Maxwell, J. C., A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, 1873.

    25. Signore, L. R., "About the gravity paradox in an expanding universe," Nuovo Ciment. B, Vol. 111, 1087, 1996.
    doi:10.1007/BF02743220

    26. Sultana, J. and D. Kazanas, "The problem of inertia in Friedman universes," Int. J. Mod Phys. D, Vol. 20, 1205, 2011.
    doi:10.1142/S0218271811019384

    27. Prytz, K., "Sources of inertia in an expanding universe," Open Physics, Vol. 13, 130, 2015.

    28. Sciama, D. W., "On the origin of inertia," Monthly Notices of the Royal Astronomical Society, Vol. 113, 34, 1953.
    doi:10.1093/mnras/113.1.34

    29. Page, L., "Derivation of the fundamental relations of electrodynamics from those of electrostatics," Am J. Sci., Vol. 34, 57, 1912.
    doi:10.2475/ajs.s4-34.199.57