Vol. 64

Latest Volume
All Volumes
All Issues

Efficacy of Magnetic and Capacitive Hyperthermia on Hepatocellular Carcinoma

By Chien-Chang Chen and Jean-Fu Kiang
Progress In Electromagnetics Research M, Vol. 64, 181-192, 2018


The efficacy of applying magnetic hyperthermia (MHT) and capacitive hyperthermia (CHT) to treat hepatocellular carcinoma (HCC) is studied. Magnetoquasistatic (MQS) and electroquasistatic (EQS) formulations are develpoed to compute the magnetic field and electric field dirtributions, respectively, which are numerically solved by using finite element method. The heat transport equation is applied to compute the temperature distribution in the treated area. Simulation results of temperature distribution are used to compare the efficacy of MHT and CHT.


Chien-Chang Chen and Jean-Fu Kiang, "Efficacy of Magnetic and Capacitive Hyperthermia on Hepatocellular Carcinoma," Progress In Electromagnetics Research M, Vol. 64, 181-192, 2018.


    1. Raoof, M. and S. A. Curley, "Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma," Int. J. Hepatol., 676957, May 2011.

    2. Moroz, P., S. K. Jones, and B. N. Gray, "Status of hyperthermia in the treatment of advanced liver cancer," J. Surg. Oncol., Vol. 77, 259-269, 2001.

    3. Crocetti, L. and R. Lencioni, "Thermal ablation of hepatocellular carcinoma," Cancer Imaging, Vol. 8, 19-26, 2008.

    4. Corr, S. J., B. T. Cisneros, L. Green, M. Raoof, and S. A. Curley, "Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy," J. Vis. Exp., Vol. 78, e50480, Aug. 2013.

    5. Kotsuka, Y., H. Kayahara, K. Murano, H. Matsui, and M. Hamuro, "Local inductive heating method using novel high-temperature implant for thermal treatment of luminal organs," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 10, 2574-2580, Oct. 2009.

    6. Iero, D. A. M., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.

    7. Yamamoto, K. and Y. Anaka, "Radio frequency capacitive hyperthermia for unresectable hepatic cancers," J. Gastroenterol., Vol. 32, 361-366, 1997.

    8. Jamil, M. and E. Y. K. Ng, "To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective," J. Therm. Biol., Vol. 38, No. 5, 272-279, Jul. 2013.

    9. Trujillo-Romero, C. J., S. Garcia-Jimeno, A. Vera-Hernandez, L. Leija-Salas, and J. Estelrich, "Using nanoparticles for enhancing the focusing heating effect of an external waveguide applicator for oncology hyperthermia: Evaluation in muscle and tumor phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.

    10. Vrba, D., D. B. Rodrigues, J. Vrba (Jr.), and P. R. Stauffer, "Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments," Progress In Electromagnetics Research, Vol. 156, 1-12, 2016.

    11. Staruch, R., R. Chopra, and K. Hynynen, "Hyperthermia in bone generated with MR imaging controlled focused ultrasound: Control strategies and drug delivery," Radiology, Vol. 263, No. 1, 117-127, Apr. 2012.

    12. Chen, X., C. J. Diederich, J. H. Wootton, J. Pouliot, and I-C. Hsu, "Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia," Int. J. Hyperthermia, Vol. 26, No. 1, 39-55, Feb. 2010.

    13. Jordan, A., P.Wust, H. F¨ahling, W. John, A. Hinz, and R. Felix, "Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia," Int. J. Hyperthermia, Vol. 9, No. 1, 51-68, Jan.-Feb. 1993.

    14. Li, F.-E., W.-H. Yan, Y.-H. Guo, H. Qi, and H.-X. Zhou, "Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer," Int. J. Hyperthermia, Vol. 25, No. 5, 383-391, Aug. 2009.

    15. Chang, P. E. J., S. Purushotham, H. Rumpel, I. H. C. Kee, R. T. H. Ng, P. K. H. Chow, R. V. Ramanujan, and C. K. Tan, "Novel dual magnetic drug targeting and hyperthermia therapy in hepatocellular carcinoma with thermosensitive polymer-coated nanoparticles," J. Gastroint. Dig. Syst., Vol. 4, No. 4, 2014.

    16. Dong, Y. and G. Wu, "Analysis of short and long term therapeutic effects of radiofrequency hyperthermia combined with conformal radiotherapy in hepatocellular carcinoma," J. Balkan Union Oncology, Vol. 21, No. 2, 407-411, Mar. 2016.

    17. Nagata, Y., M. Hiraoka, Y. Nishimura, S. Masunaga, M. Mitumori, Y. Okuno, M. Fujishiro, S. Kanamori, N. Horii, K. Akuta, K. Sasai, M. Abe, and Y. Fukuda, "Clinical results of radiofrequency hyperthermia for malignant liver tumors," Int. J. Radiat. Oncol. Biol. Phys., Vol. 38, No. 2, 359-365, May 1997.

    18. Shen, L. C. and J. A. Kong, Applied Electromagnetism, Ch. 15, CI Engineering, 1995.

    19. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Trans. Antennas Propagat., Vol. 64, No. 10, 4355-4364, Jul. 2016.

    20. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Wiley-IEEE Press, 2006.

    21. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

    22. Kim, K., T. Seo, K. Sim, and Y. Kwon, "Magnetic nanoparticle-assisted microwave hyperthermia using an active integrated heat applicator," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 7, 2184-2197, Jul. 2016.

    23. Tsuda, N., K. Kuroda, and Y. Suzuki, "An inverse method to optimize heating conditions in RF-capacitive hyperthermia," IEEE Trans. Biomed. Eng., Vol. 43, No. 10, 1029-1037, 1996.

    24. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., Ch. 3, CRC Press, Jul. 2000.

    25. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, No. 11, 2251-2269, Nov. 1996.

    26. Wang, H., Y. He, M. Yang, Q.-G. Yan, F.-S. You, F. Fu, T. Wang, X.-Y. Huo, X.-Z. Dong, and X.-T. Shi, "Dielectric properties of human liver from 10 Hz to 100 MHz: Normal liver, hepatocellular carcinoma, hepatic fibrosis and liver hemangioma," Biomed. Mater. Eng., Vol. 24, No. 6, 2725-2732, 2013.

    27. Midi, N. S., K. Sasaki, R.-I. Ohyama, and N. Shinyashiki, "Broadband complex dielectric constants of water and sodium chloride aqueous solutions with different DC conductivities," IEEJ Trans. Electrical Electronic Engineering, Vol. 9, No. s1, s8-s12, Oct. 2014.

    28. Rattanadech, P. and P. Keangin, "Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna," Int. J. Heat Mass Tran., Vol. 58, No. 1-2, 457-470, Mar. 2013.

    29. Goumard, C., F. Perdigao, J. Cazejust, S. Zalinski, O. Soubrane, and O. Scatton, "Is computed tomography volumetric assessment of the liver reliable in patients with cirrhosis?," HPB (Oxford), Vol. 16, No. 2, 188-194, Feb. 2014.

    30. Astefanoaei, I., I. Dumitru, H. Chiriac, and A. Stancu, "Use of the Fe-Cr-Nb-B systems with low Curie temperature as mediators in magnetic hyperthermia," IEEE Trans. Magn., Vol. 50, No. 11, 7400904, Nov. 2014.

    31. Ahmed, M., Z.-J. Liu, S. Humphries, and S. N. Goldberg, "Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation," Int. J. Hyperthermia, Vol. 24, No. 7, 577-588, Nov. 2008.

    32. Ippolito, D., S. Sironi, M. Pozzi, L. Antolini, L. Ratti, C. Alberzoni, E. B. Leone, F. Meloni, M. G. Valsecchi, and F. Fazio, "Hepatocellular carcinoma in cirrhotic liver disease: Functional computed tomography with perfusion imaging in the assessment of tumor vascularization," Academic Radiology, Vol. 15, No. 7, 919-927, Jul. 2008.

    33. Ippolito, D., C. Capraro, A. Casiraghi, C. Cestari, and S. Sironi, "Quantitative assessment of tumour associated neovascularisation in patients with liver cirrhosis and hepatocellular carcinoma: Role of dynamic-CT perfusion imaging," Eur. Radiol., Vol. 2012, No. 22, 803-811, 2012.

    34. Wang, Z., Z. Ying, A. Bosy-Westphal, J. Zhang, B. Schautz, W. Later, S. B. Heymsfield, and M. J. Muller, "Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure," Am. J. Clin. Nutr., Vol. 92, No. 6, 1369-1377, Dec. 2010.

    35. Urdaneta, M. and P. Wahid, "A study on enhanced hyperthermia treatment for liver cancer using magnetic nanoparticles," IEEE Microwave RF Conf., Dec. 2014.

    36. Liu, Z.-J., M. Ahmed, Y. Weinstein, M. Yi, R. L. Mahajan, and S. N. Goldberg, "Characterization of the RF ablation-induced `oven-effect': The importance of background tissue thermal conductivity on tissue heating," Int. J. Hyperthermia, Vol. 22, No. 4, 327-342, Jun. 2006.

    37. Lang, J., B. Erdmann, and M. Seebass, "Impact of nonlinear heat transfer on temperature control in regional hyperthermia," IEEE Trans. Biomed. Eng., Vol. 46, No. 9, 1129-1138, Sep. 1999.

    38. Nelson, D. A., S. Charbonnel, A. R. Curran, E. A. Marttila, D. Fiala, P. A. Mason, and J. M. Ziriax, "A high-resolution voxel model for predicting local tissue temperatures in humans subjected to warm and hot environments," J. Biomech. Eng., Vol. 131, No. 4, 041003-1-12, Jan. 2009.

    39. Rossmann, C. and D. Haemmerich, "Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures," Crit. Rev. Biomed. Eng., Vol. 42, No. 6, 467-492, Nov.-Dec. 2014.

    40. Nieskoski, M. D. and B. S. Trembly, "Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia," IEEE Trans. Biomed. Eng., Vol. 61, No. 6, 1642-1650, Jun. 2014.

    41. Pearce, J., A. Giustini, R. Stigliano, and P. J. Hoopes, "Magnetic heating of nanoparticles: The importance of particle clustering to achieve therapeutic temperatures," J. Nanotechnol. Eng. Med., Vol. 4, No. 1, Feb. 2013.

    42. Trujillo-Romero, C. J., L. Leija-Salas, and A. Vera-Hernandez, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole, inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-120, 2011.