A higher-order accurate solution to electromagnetic scattering problems is obtained at reduced computational cost in a p-variable finite volume time domain method in a scattered field formulation. Spatial operators of lower order, including first-order accuracy, are employed locally in substantial parts of the computational domain during the solution process. The use of computationally cheaper and lower order spatial operators does not affect the overall higher-order accuracy of the solution. The order of the spatial operator at a candidate cell during numerical simulation can vary in space and time and is dynamically chosen based on an order of magnitude comparison of scattered and incident fields at the cell centre. Numerical results are presented for electromagnetic scattering from perfectly conducting two-dimensional scatterers subject to transverse magnetic and transverse electric illumination.
2. Brandt, A., "Guide to multigrid development," Multigrid Methods, W. Hackbusch, U. Trottenberg (Eds.), 220-312, Springer-Verlag, 1982.
3. Fidkowski, K. J., T. A. Oliver, J. Lu, and D. L. Darmofal, "p-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier Stokes equations," J. Comp. Phys., Vol. 207, 92-113, 2005.
doi:10.1016/j.jcp.2005.01.005
4. Berger, M. J. and J. Oliger, "Adaptive mesh refinement for hyperbolic partial differential equations," J. Comp. Phys., Vol. 53, 484-512, 1984.
doi:10.1016/0021-9991(84)90073-1
5. Babuška, I., "The p- and hp-versions of the finite element method: The state of the art," Finite Elements: Theory and Applications, Springer, New York, 1988.
6. Chatterjee, A., "A Multilevel numerical approach with application in time-domain electromagnetics," Commn. Comp. Phys., Vol. 17, 703-720, 2015.
doi:10.4208/cicp.181113.271114a
7. Joshi, S. M. and A. Chatterjee, "Higher-order multilevel framework for ADER scheme in computational aeroacoustics," J. Comp. Phys., Vol. 338, 388-404, 2017.
doi:10.1016/j.jcp.2017.02.062
8. Shu, C. W. and S. Osher, "Efficient implementation of essentially non-oscillatory shock-capturing schemes," J. Comp. Phys., Vol. 77, 439-471, 1988.
doi:10.1016/0021-9991(88)90177-5
9. Shu, C. W. and S. Osher, "Efficient implementation of essentially non-oscillatory shock-capturing schemes II," J. Comp. Phys., Vol. 83, 32-78, 1989.
doi:10.1016/0021-9991(89)90222-2
10. LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, New York, 2002.
doi:10.1017/CBO9780511791253
11. Kundu, P. K., I. M. Cohen, and D. R. Dowling, Fluid Mechanics, 5th Ed., Academic Press, Elsevier, Boston, 2015.
12. Chatterjee, A. and R. S. Myong, "Efficient implementation of higher-order finite volume time domain method for electrically large scatterers," Progress In Electromagnetics Research B, Vol. 17, 233-254, 2009.
doi:10.2528/PIERB09073102
13. Chatterjee, A. and A. Shrimal, "Essentially nonoscillatory finite volume scheme for electromagnetic scattering by thin dielectric coatings," AIAA J., Vol. 42, 361-365, 2004.
doi:10.2514/1.553
14. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley, New York, 1989.
15. Taflove, A. and K. R. Umashankar, "Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section," Proc. of the IEEE, Vol. 77, 682-699, 1989.
doi:10.1109/5.32059
16. Deore, N. and A. Chatterjee, "A cell-vertex based multigrid solution of the time domain Maxwell’s equations," Progress In Electromagnetics Research B, Vol. 23, 181-197, 2010.
doi:10.2528/PIERB10062002
17. Ekaterinaris, J. A., "High-order accurate, low numerical diffusion methods for aerodynamics," Prog. in Aero. Sci., Vol. 41, 192-300, 2005.
doi:10.1016/j.paerosci.2005.03.003