Vol. 64

Latest Volume
All Volumes
All Issues
2018-02-21

Unidirectional UWB Magneto-Electric Antenna for Medical Telemetry

By Johnbosco I. E. Anosike, Li-Ying Feng, Hong-Xing Zheng, Ying Liu, and Yue-Xin Liu
Progress In Electromagnetics Research M, Vol. 64, 211-217, 2018
doi:10.2528/PIERM17110910

Abstract

An implantable magneto-electric antenna (IMEA) aiming for operation at ultra-wideband (UWB: 3.1-10.6 GHz) frequency spectrum is presented for biotelemetry usages for the first time. The IMEA is composed of a horizontal planar bowtie radiator, from whose middle the antenna is excited, and a vertically inclined rectangular radiator. The two radiators are complementary and correspond to electric and magnetic dipoles, respectively. The radiators are built over a square dielectric material (εr = 6, σ =0.0005) with a cavity for embedding suitable accompanying circuitry system. The IMEA with its biocompatible insulator (PEEK: εr = 3.2, tan δ = 0.01) measures 1456 mm3 in volume. HFSS software was used to carry out numerical optimization of the IMEA with a simple multilayered model of body tissue (Skin, Fat and Muscle) as the host environment. The simulated result of the proposed IMEA shows over 90% impedance bandwidth (S11<-10 dB) and records a remarkable high gain of 2 dBi within 70% bandwidth. The radiation efficiency is around 50%, and a unidirectional radiation pattern with little back lobe is observed.

Citation


Johnbosco I. E. Anosike, Li-Ying Feng, Hong-Xing Zheng, Ying Liu, and Yue-Xin Liu, "Unidirectional UWB Magneto-Electric Antenna for Medical Telemetry," Progress In Electromagnetics Research M, Vol. 64, 211-217, 2018.
doi:10.2528/PIERM17110910
http://test.jpier.org/PIERM/pier.php?paper=17110910

References


    1. Sumin, Y., K. Kihyun, and N. Sangwook, "Outer-wall loop antenna for ultrawideband capsule endoscope system," Antennas Wirel. Propag. Lett. IEEE, Vol. 9, 1135-1138, 2010.
    doi:10.1109/LAWP.2010.2094996

    2. Challa, N. R. and S. Raghavan, "Design of multiband implantable loop antenna for in body applications," 2015 Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG) Kurnool, 239-242, Andhra Pradesh, India, 2015.

    3. Yazdandoost, K. Y., "UWB antenna for body implanted applications," 2012 42nd European Microwave Conference, 932-935, Amsterdam, 2012.
    doi:10.23919/EuMC.2012.6459433

    4. Abadia, J., F. Merli, J. F. Zurcher, J. R. Mosig, and A. K. Skrivervik, "3D-spiral small antenna design and realization for biomedical telemetry in the MICS band," Radioengineering, Vol. 18, No. 4, 359-367, Dec. 2009.

    5. Gordillo, A. C. and I. Balasingham, "On directive antennas application to implant - on-body UWB communications," The 19th Annual Wireless and Optical Communications Conference (WOCC), 1-5, Shanghai, 2010.

    6. Kumar, S. A. and T. Shanmuganantham, "Implantable CPW fed X-shaped monopole antenna for ISM band," 2013 National Conference on Communications (NCC), 2-5, New Delhi, India, 2013.

    7. Luk, K. and H. Wong, "A new wideband unidirectional antenna element," Int. J. Microw. Opt. Technol., Vol. 1, No. 1, 35-44, 2006.

    8. Ding, C. and K. Luk, "Low-profile magneto-electric dipole antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1642-1644, Jan. 2016.
    doi:10.1109/LAWP.2016.2519942

    9. Ge, L. and K. M. Luk, "A magneto-electric dipole for unidirectional UWB communications,", Vol. 61, No. 11, 5762-5765, Jul. 2013.
    doi:10.1109/TAP.2013.2276924

    10. IEEE Computer Society, "IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks,", 1-271, 2012.

    11. Chávez-Santiago, R., C. García-Pardo, A. Fornes-Leal, A. Vallés-Lluch, I. Balasingham, and N. Cardona, "Ultra wideband propagation for future in-body sensor networks," 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), 2160-2163, 2014.
    doi:10.1109/PIMRC.2014.7136530

    12. Zengin, F., E. Akkaya, B. T¨uretken, and S. E. San, "Design and realization of ultra wide-band implant antenna for biotelemetry systems," 30th URSI General Assembly and Scientific Symposium, 5-8, URSIGASS, Istanbul, 2011.

    13. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: Challenges and solutions," IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, 210-228, Jun. 2012.
    doi:10.1109/MAP.2012.6293992

    14. Laird, "Eccostock@HIK500F - High temperature, low loss, adjusted dielectric constant stock,", [Online], Available: www.lairdtech.com.

    15. Italian National Research Council - Institute for Applied Physics, "Dielectric properties of body tissues in the frequency range 10 Hz-100 GHz," Inrc, 2012, [Online], Available: http://niremf.ifac.cnr.it/tissprop/.

    16. Magill, M. K., G. A. Conway, and W. G. Scanlon, "Robust implantable antenna for inbody communications," Proceedings of the 2015 Loughborough Antennas Propagation Conference (LAPC), 1-4, 2015.

    17. Bakogianni, S. and S. Koulouridis, "Design of a novel miniature implantable rectenna for in-body medical devices power support," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, Davos, 2016.

    18. Morabito, A. F., A. R. Lagana, and T. Isernia, "Isophoric array antennas with a low number of control points: a `size tapered' solution," Progress In Electromagnetics Research Letters, Vol. 36, 121-131, 2013.
    doi:10.2528/PIERL12092705

    19. Morabito, A. F., A. R. Laganà, G. Sorbello, and T. Isernia, "Mask-constrained power synthesis of maximally sparse linear arrays through a compressive-sensing-driven strategy," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 10, 1384-1396, 2015.
    doi:10.1080/09205071.2015.1046561