Vol. 87

Latest Volume
All Volumes
All Issues
2019-11-30

Polarization-Independent Wide-Angle Terahertz Metamaterial Absorber: Design, Fabrication and Characterization

By Khwanchai Tantiwanichapan, Anucha Ruangphanit, Wittawat Yamwong, Rattanawan Meananeatra, Arckom Srihapat, Jia Yi Chia, Napat Cota, Kiattiwut Prasertsuk, Patharakorn Rattanawan, Chayut Thanapirom, Rungroj Jintamethasawat, Kittipong Kasamsook, and Nipapan Klunngien
Progress In Electromagnetics Research M, Vol. 87, 33-42, 2019
doi:10.2528/PIERM19081605

Abstract

A metamaterial absorber in the Terahertz (THz) range is simulated and experimentally investigated in this work. The desired absorption frequency, efficiency and bandwidth can be tuned by changing the metal and dielectric geometric parameters. An absorption greater than 85% for TM polarized light with an incident angle up to 70˚ at any azimuthal direction is observed in a circular disc THz metamaterial structure. By adjusting the dielectric silicon dioxide (SiO2) thickness to 4 μm, an optimal absorption greater than 95% can be achieved at a resonance frequency of 0.97 THz. The experimental results also indicate that using Titanium (Ti) as a metamaterial metal layer provides four times broader absorption bandwidth than Aluminium (Al). This study, which works on polarization-insensitive and wide-angle metamaterial absorbers, can be fundamentally applied tomany THz applications including THz spectroscopy, imaging, and detection.

Citation


Khwanchai Tantiwanichapan, Anucha Ruangphanit, Wittawat Yamwong, Rattanawan Meananeatra, Arckom Srihapat, Jia Yi Chia, Napat Cota, Kiattiwut Prasertsuk, Patharakorn Rattanawan, Chayut Thanapirom, Rungroj Jintamethasawat, Kittipong Kasamsook, and Nipapan Klunngien, "Polarization-Independent Wide-Angle Terahertz Metamaterial Absorber: Design, Fabrication and Characterization," Progress In Electromagnetics Research M, Vol. 87, 33-42, 2019.
doi:10.2528/PIERM19081605
http://test.jpier.org/PIERM/pier.php?paper=19081605

References


    1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    2. Hasar, U. C. and J. J. Barroso, "Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterial," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011.
    doi:10.2528/PIER10112303

    3. Belov, P. A., Y. Hao, and S. Sudhakaran, "Subwavelength microwave imaging using an array of parallel conducting wires as a lens," Phys. Rev. B, Vol. 73, 033108, 2006.
    doi:10.1103/PhysRevB.73.033108

    4. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of doublenegative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
    doi:10.2528/PIER11090502

    5. Lee, Y., S. J. Kim, H. Park, and B. Lee, "Metamaterials and metasurfaces for sensor applications," Sensors, Vol. 17, 1726, 2017.
    doi:10.3390/s17081726

    6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    7. Alitalo, P., C. A. Valagiannopoulos, and S. A. Tretyakov, "Simple cloak for antenna blockage reduction," IEEE Int. Antennas Propag. Symposium, 2011.

    8. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Opt. Mater., Vol. 88, 674-679, 2019.
    doi:10.1016/j.optmat.2019.01.002

    9. Xu, W., L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, "Gold nanoparticle-based terahertz metmaterial sensors: Mechanisms and applications," ACS Photonics, Vol. 3, 2308-2314, 2016.
    doi:10.1021/acsphotonics.6b00463

    10. Wang, B. X., X. Zhai, G. Z. Wang, W. Q. Huang, and L.-L. Wang, "A novel dual-band terahertz metamaterial absorber for a sensor application," J. Appl. Phys., Vol. 117, 014504, 2015.
    doi:10.1063/1.4905261

    11. Escorcia, I., J. Grant, J. Gough, and D. R. Cumming, "Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode," Opt. Lett., Vol. 41, 3261-3264, 2016.
    doi:10.1364/OL.41.003261

    12. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    13. Tao, H., E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, "Microwave and terahertz wave sensing with metamaterials," Opt. Express, Vol. 19, 21620, 2011.
    doi:10.1364/OE.19.021620

    14. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
    doi:10.2528/PIER11022307

    15. Ding, F., J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, "Broadband near-infrared metamaterial absorbers utilizing highly lossy metals," Scientific Reports, Vol. 6, Article number: 39445, 2016.

    16. Liu, Y., S. Gu, and C. Luo, "Ultra-thin broadband metamaterial absorber," Appl. Phys. A, Vol. 108, 19-24, 2012.
    doi:10.1007/s00339-012-6936-0

    17. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181, 2008.
    doi:10.1364/OE.16.007181

    18. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.
    doi:10.1063/1.3276072

    19. Cheng, Y. H., M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, "Ultrathin sixband polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves," Materials, Vol. 10, No. 6, 591, 2017.
    doi:10.3390/ma10060591

    20. Huang, M., Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, "Based on graphene tunable dual-band terahertz metamaterial with wide-angle," Opt. Commun., Vol. 415, 194-201, 2018.
    doi:10.1016/j.optcom.2018.01.051

    21. Luo, H. and Y. Cheng, "Dual-band terahertz perfect metasurface absorber based on bi-layered all dielectric resonator structure," Opt. Mater., Vol. 96, 109279, 2019.
    doi:10.1016/j.optmat.2019.109279

    22. Ju, Z. D., G. Q. Xu, Z. H. Wei, J. Li, Q. Zhao, and J. Huang, "A single-patterned five-band terahertz metamaterial absorber based on multiple resonance mechanisms," Mod. Phys. Lett. B, Vol. 32, 1850029, 2018.
    doi:10.1142/S021798491850029X

    23. Wang, B. X., G. Z. Wang, and L. L. Wang, "Design of a novel dual-band terahertz metamaterial absorber," Plasmonics, Vol. 11, 523-530, 2016.
    doi:10.1007/s11468-015-0076-2

    24. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," J. Appl. Phys., Vol. 118, 083103, 2015.
    doi:10.1063/1.4929449

    25. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, 021102, 2014.
    doi:10.1063/1.4890521

    26. Wen, Y., W. Ma, J. Bailey, G. Matmon, and X. Yu, "Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption," IEEE Trans. on Terahertz Science and Technology, Vol. 5, 406-411, 2015.
    doi:10.1109/TTHZ.2015.2401392

    27. Wang, G. D., M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, "Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches," Eur. Phys. J. B, Vol. 86, 2013.
    doi:10.1140/epjb/e2013-40210-5

    28. Ju, Z. D., G. Q. Xu, Z. H. Wei, J. Li, Q. Zhao, and J. Huang, "An ultra-broadband terahertz metamaterial absorber based on split ring array and island-shape structures," Mod. Phys. Lett. B, Vol. 32, 1850189, 2018.
    doi:10.1142/S0217984918501890

    29. Cheng, Y., R. Gong, and Z. Cheng, "A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves," Opt. Commun., Vol. 361, 41-46, 2016.
    doi:10.1016/j.optcom.2015.10.031

    30. Cheng, Y., R. Gong, and J. Zhao, "A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves," Opt. Mater., Vol. 62, 28-33, 2016.
    doi:10.1016/j.optmat.2016.09.042

    31. Huang, M. L., Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, "Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene," Materials, Vol. 11, No. 4, 540, 2018.
    doi:10.3390/ma11040540

    32. Li, D., H. Huang, H. Xia, J. Zeng, H. Li, and D. Xie, "Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator," Results Phys., Vol. 11, 659-664, 2018.
    doi:10.1016/j.rinp.2018.10.014

    33. Zhou, S., Z. Shen, R. Kang, S. Ge, and W. Hu, "Liquid crystal tunable dielectric metamaterial absorber in the terahertz range," Appl. Sci., Vol. 8, 2211, 2018.
    doi:10.3390/app8112211

    34. Grant, J., Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, "Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett., Vol. 36, 3476, 2011.
    doi:10.1364/OL.36.003476

    35. Hu, F., L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, "Design of polarization insensitive multiband terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 46, 2013.

    36. Valagiannopoulos, C. A., A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and R. Simovski, "Perfect magnetic mirror and simple perfect absorber in the visible spectrum," Phys. Rev. B, Vol. 91, 115305, 2015.
    doi:10.1103/PhysRevB.91.115305

    37. Papadimopoulos, A. N., N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, "Wide-angle absorption of visible light from simple bilayers," Appl. Optics, Vol. 56, 9779-9786, 2017.
    doi:10.1364/AO.56.009779

    38. Ra’di, Y., V. S. Asadchy, and S. A. Tretyakov, "Total absorption of electromagnetic waves in ultimately thin layers," IEEE Trans. Antennas Propag., Vol. 61, 4606-4614, 2013.
    doi:10.1109/TAP.2013.2271892

    39. Tagay, Z. and C. Valagiannopoulos, "Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles," Phys. Rev. B, Vol. 98, 115306, 2018.
    doi:10.1103/PhysRevB.98.115306

    40. Nefedov, I. S., C. A. Valagiannopoulos, and L. A. Melnikov, "Perfect absorption in graphene multilayers," J. Opt., Vol. 15, 114003, 2013.
    doi:10.1088/2040-8978/15/11/114003

    41. Lei, L., S. Li, H. Huang, K. Tao, and P. Xu, "Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial," Opt. Express, Vol. 26, 5686, 2018.
    doi:10.1364/OE.26.005686