Vol. 87

Latest Volume
All Volumes
All Issues

Polarization-Independent Wide-Angle Terahertz Metamaterial Absorber: Design, Fabrication and Characterization

By Khwanchai Tantiwanichapan, Anucha Ruangphanit, Wittawat Yamwong, Rattanawan Meananeatra, Arckom Srihapat, Jia Yi Chia, Napat Cota, Kiattiwut Prasertsuk, Patharakorn Rattanawan, Chayut Thanapirom, Rungroj Jintamethasawat, Kittipong Kasamsook, and Nipapan Klunngien
Progress In Electromagnetics Research M, Vol. 87, 33-42, 2019


A metamaterial absorber in the Terahertz (THz) range is simulated and experimentally investigated in this work. The desired absorption frequency, efficiency and bandwidth can be tuned by changing the metal and dielectric geometric parameters. An absorption greater than 85% for TM polarized light with an incident angle up to 70˚ at any azimuthal direction is observed in a circular disc THz metamaterial structure. By adjusting the dielectric silicon dioxide (SiO2) thickness to 4 μm, an optimal absorption greater than 95% can be achieved at a resonance frequency of 0.97 THz. The experimental results also indicate that using Titanium (Ti) as a metamaterial metal layer provides four times broader absorption bandwidth than Aluminium (Al). This study, which works on polarization-insensitive and wide-angle metamaterial absorbers, can be fundamentally applied tomany THz applications including THz spectroscopy, imaging, and detection.


Khwanchai Tantiwanichapan, Anucha Ruangphanit, Wittawat Yamwong, Rattanawan Meananeatra, Arckom Srihapat, Jia Yi Chia, Napat Cota, Kiattiwut Prasertsuk, Patharakorn Rattanawan, Chayut Thanapirom, Rungroj Jintamethasawat, Kittipong Kasamsook, and Nipapan Klunngien, "Polarization-Independent Wide-Angle Terahertz Metamaterial Absorber: Design, Fabrication and Characterization," Progress In Electromagnetics Research M, Vol. 87, 33-42, 2019.


    1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.

    2. Hasar, U. C. and J. J. Barroso, "Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterial," Progress In Electromagnetics Research, Vol. 112, 109-124, 2011.

    3. Belov, P. A., Y. Hao, and S. Sudhakaran, "Subwavelength microwave imaging using an array of parallel conducting wires as a lens," Phys. Rev. B, Vol. 73, 033108, 2006.

    4. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of doublenegative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.

    5. Lee, Y., S. J. Kim, H. Park, and B. Lee, "Metamaterials and metasurfaces for sensor applications," Sensors, Vol. 17, 1726, 2017.

    6. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

    7. Alitalo, P., C. A. Valagiannopoulos, and S. A. Tretyakov, "Simple cloak for antenna blockage reduction," IEEE Int. Antennas Propag. Symposium, 2011.

    8. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Opt. Mater., Vol. 88, 674-679, 2019.

    9. Xu, W., L. Xie, J. Zhu, X. Xu, Z. Ye, C. Wang, Y. Ma, and Y. Ying, "Gold nanoparticle-based terahertz metmaterial sensors: Mechanisms and applications," ACS Photonics, Vol. 3, 2308-2314, 2016.

    10. Wang, B. X., X. Zhai, G. Z. Wang, W. Q. Huang, and L.-L. Wang, "A novel dual-band terahertz metamaterial absorber for a sensor application," J. Appl. Phys., Vol. 117, 014504, 2015.

    11. Escorcia, I., J. Grant, J. Gough, and D. R. Cumming, "Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode," Opt. Lett., Vol. 41, 3261-3264, 2016.

    12. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

    13. Tao, H., E. A. Kadlec, A. C. Strikwerda, K. Fan, W. J. Padilla, R. D. Averitt, E. A. Shaner, and X. Zhang, "Microwave and terahertz wave sensing with metamaterials," Opt. Express, Vol. 19, 21620, 2011.

    14. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

    15. Ding, F., J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, "Broadband near-infrared metamaterial absorbers utilizing highly lossy metals," Scientific Reports, Vol. 6, Article number: 39445, 2016.

    16. Liu, Y., S. Gu, and C. Luo, "Ultra-thin broadband metamaterial absorber," Appl. Phys. A, Vol. 108, 19-24, 2012.

    17. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181, 2008.

    18. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111, 2009.

    19. Cheng, Y. H., M. L. Huang, H. R. Chen, Z. Z. Guo, X. S. Mao, and R. Z. Gong, "Ultrathin sixband polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves," Materials, Vol. 10, No. 6, 591, 2017.

    20. Huang, M., Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, "Based on graphene tunable dual-band terahertz metamaterial with wide-angle," Opt. Commun., Vol. 415, 194-201, 2018.

    21. Luo, H. and Y. Cheng, "Dual-band terahertz perfect metasurface absorber based on bi-layered all dielectric resonator structure," Opt. Mater., Vol. 96, 109279, 2019.

    22. Ju, Z. D., G. Q. Xu, Z. H. Wei, J. Li, Q. Zhao, and J. Huang, "A single-patterned five-band terahertz metamaterial absorber based on multiple resonance mechanisms," Mod. Phys. Lett. B, Vol. 32, 1850029, 2018.

    23. Wang, B. X., G. Z. Wang, and L. L. Wang, "Design of a novel dual-band terahertz metamaterial absorber," Plasmonics, Vol. 11, 523-530, 2016.

    24. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," J. Appl. Phys., Vol. 118, 083103, 2015.

    25. Zhu, J., Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, "Ultra-broadband terahertz metamaterial absorber," Appl. Phys. Lett., Vol. 105, 021102, 2014.

    26. Wen, Y., W. Ma, J. Bailey, G. Matmon, and X. Yu, "Broadband terahertz metamaterial absorber based on asymmetric resonators with perfect absorption," IEEE Trans. on Terahertz Science and Technology, Vol. 5, 406-411, 2015.

    27. Wang, G. D., M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, "Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches," Eur. Phys. J. B, Vol. 86, 2013.

    28. Ju, Z. D., G. Q. Xu, Z. H. Wei, J. Li, Q. Zhao, and J. Huang, "An ultra-broadband terahertz metamaterial absorber based on split ring array and island-shape structures," Mod. Phys. Lett. B, Vol. 32, 1850189, 2018.

    29. Cheng, Y., R. Gong, and Z. Cheng, "A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves," Opt. Commun., Vol. 361, 41-46, 2016.

    30. Cheng, Y., R. Gong, and J. Zhao, "A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves," Opt. Mater., Vol. 62, 28-33, 2016.

    31. Huang, M. L., Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, "Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene," Materials, Vol. 11, No. 4, 540, 2018.

    32. Li, D., H. Huang, H. Xia, J. Zeng, H. Li, and D. Xie, "Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator," Results Phys., Vol. 11, 659-664, 2018.

    33. Zhou, S., Z. Shen, R. Kang, S. Ge, and W. Hu, "Liquid crystal tunable dielectric metamaterial absorber in the terahertz range," Appl. Sci., Vol. 8, 2211, 2018.

    34. Grant, J., Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, "Polarization insensitive, broadband terahertz metamaterial absorber," Opt. Lett., Vol. 36, 3476, 2011.

    35. Hu, F., L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, and X. Pan, "Design of polarization insensitive multiband terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 46, 2013.

    36. Valagiannopoulos, C. A., A. Tukiainen, T. Aho, T. Niemi, M. Guina, S. A. Tretyakov, and R. Simovski, "Perfect magnetic mirror and simple perfect absorber in the visible spectrum," Phys. Rev. B, Vol. 91, 115305, 2015.

    37. Papadimopoulos, A. N., N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, "Wide-angle absorption of visible light from simple bilayers," Appl. Optics, Vol. 56, 9779-9786, 2017.

    38. Ra’di, Y., V. S. Asadchy, and S. A. Tretyakov, "Total absorption of electromagnetic waves in ultimately thin layers," IEEE Trans. Antennas Propag., Vol. 61, 4606-4614, 2013.

    39. Tagay, Z. and C. Valagiannopoulos, "Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles," Phys. Rev. B, Vol. 98, 115306, 2018.

    40. Nefedov, I. S., C. A. Valagiannopoulos, and L. A. Melnikov, "Perfect absorption in graphene multilayers," J. Opt., Vol. 15, 114003, 2013.

    41. Lei, L., S. Li, H. Huang, K. Tao, and P. Xu, "Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial," Opt. Express, Vol. 26, 5686, 2018.