In this paper, an efficient Transmission Line Matrix (TLM) approach based on the shift operator (SO) has been developed to model electromagnetic wave interactions with gyroelectric media. The main idea of this technique is to formulate the electric current density vector components by introducing the equivalence between time differential operator ϑ/ϑt and discrete time shift operator z. A concise formulation of voltage sources modeling the frequency dispersive properties of gyroelectric media is then deduced and implemented. Numerical simulations illustrate the Faraday rotation phenomenon in time domain, and in the frequency domain, reflection and transmission coefficients of left hand circular polarization and right-hand circular polarization waves are also calculated. A comparison of SO-TLM scheme with five other approches according to the criteria of accuracy and CPU time is presented. Numerical experiments show that SO-TLM provides the most accurate and fastest results.
2. Yagli, A. F., J. K. Lee, and E. Arvas, "Scattering from three-dimensional Dispersive Gyrotropic Bodies using the TLM method," Progress In Electromagnetics Research B, Vol. 18, 225-241, 2003.
3. Yaich, M. I. and M. Khalladi, "An SCN-TLM model for the analysis of ferrite media," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 217-219, 2009.
doi:10.1109/LMWC.2003.814105
4. Khalladi, M., M. I. Yaich, N. Aknine, and C. Carrion, "Modeling of electromagnetic waves propagation in non-linear optical media using HSCN-TLM method," IEICE Electronics Express, Vol. 2, No. 13, 384-391, 2005.
doi:10.1587/elex.2.384
5. El Adraoui, S., K. Mounirh, A. Zugari, M. I. Yaich, and M. Khalladi, "Novel CDRC-TLM algorithm for the analysis of magnetized plasma," International Journal for Light and Electron Optics, Vol. 125, No. 1, 276-279, 2014.
doi:10.1016/j.ijleo.2013.06.049
6. Mounirh, K., S. El Adraoui, M. Charif, M. I. Yaich, and M. Khalladi, "Modeling of anisotropic magnetized plasma media using PLCDRC-TLM method," International Journal for Light and Electron Optics, Vol. 126, No. 15-16, 1479-1482, 2015.
doi:10.1016/j.ijleo.2015.04.032
7. El Adraoui, S., A. Zugari, K. Mounirh, M. Charif, M. I. Yaich, and M. Khalladi, "Runge- Kutta exponential time differencing-TLM method for modeling cold plasma media," International Conference on Multimedia Computing and Systems (ICMCS), 1363-1366, Marrakech, Morocco, 2014.
8. El Adraoui, S., M. Bassoh, M. Khalladi, M. I. Yaich, and A. Zugari, "RKETD-TLM modeling of anisotropic magnetized plasma," International Journal of Science and Advanced Technology, Vol. 2, No. 8, 81-84, 2012.
9. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. I. Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103
10. Attiya, A. M., "Shift-operator finite difference time domain analysis of chiral medium," Progress In Electromagnetics Research M, Vol. 13, No. 10, 29-40, 2010.
doi:10.2528/PIERM10052403
11. Yaich, M. I., M. Khalladi, I. Zekik, and J. A. Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 193-195, 2002.
doi:10.1109/LMWC.2002.802027
12. El Adraoui, S., A. Zugari, M. Bassouh, M. I. Yaich, and M. Khalladi, "Novel PLRC-TLM algorithm implementation for modeling electromagnetic wave propagation in gyromagnetic media," International Journal of Advances in Science and Technology, Vol. 6, No. 1, 26-32, 2013.