Vol. 87

Latest Volume
All Volumes
All Issues
2019-12-04

Volume Fraction Extraction for Binary Mixture of Ethanol and Methanol Using Optimized Microwave Microfluidic Sensor

By Tahir Ejaz, Abdul Sami, Muhammad Ali Mughal, and Hamood Ur Rahman
Progress In Electromagnetics Research M, Vol. 87, 43-52, 2019
doi:10.2528/PIERM19090804

Abstract

An optimized microfluidic sensor for extracting volume ratio of binary mixture comprising of ethanol and methanol using electrical resonance technique has been presented in this work. In order to detect small changes in composition of binary mixture, a split-ring resonator structure with enhanced sensitivity was designed to operate around 2.5 GHz. A resonator was designed using HFSS, which possessed enhanced sensitivity. A novel algorithm for optimization was devised for binary mixture of the two liquids. The resonator was fabricated and tested for validation of results. Samples of ethanol and methanol mixture in different volume ratios were prepared and filled in micro-capillary tubes. These tubes were placed inside the resonant structure to perturb electric field. Variations in resonant properties due to change in volume ratio of liquid mixtures were analyzed. Resonant frequency, s-parameters and quality factor of structure were measured. It was observed that change in volume fraction as small as 1/100 resulted a shift of 0.25 MHz in resonant frequency (relatively high level of sensitivity). Measured results were utilized by mathematical model to compute volume fraction of liquid in these mixtures.

Citation


Tahir Ejaz, Abdul Sami, Muhammad Ali Mughal, and Hamood Ur Rahman, "Volume Fraction Extraction for Binary Mixture of Ethanol and Methanol Using Optimized Microwave Microfluidic Sensor," Progress In Electromagnetics Research M, Vol. 87, 43-52, 2019.
doi:10.2528/PIERM19090804
http://test.jpier.org/PIERM/pier.php?paper=19090804

References


    1. Al-Mously, S. I. Y., "A modified complex permittivity measurement technique at microwave frequency," International Journal of New Computer Architectures and Their Applications (IJNCAA), Vol. 2, No. 2, 389-401, 2012.

    2. Chretiennot, T., D. Dubuc, and K. Grenier, "A microwave and microfluidic planar resonator for efficient and accurate complex permittivity characterization of aqueous solutions," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 2, 972-978, 2013.
    doi:10.1109/TMTT.2012.2231877

    3. Masood, A., O. Castell, D. Barrow, C. Allender, and A. Porch, "Split ring resonator technique for compositional analysis of solvents in microcapillary systems," MicroTAS 2008 Conference, San Diego, 2008.

    4. Givot, B., J. Krupka, K. Lees, R. Clarke, and G. Hill, "Accurate measurements of permittivity and dielectric loss tangent of low loss dielectrics at frequency range 100 MHz–20 GHz," International Conference on Microwaves, Radar & Wireless Communications, 232-235, 2006.

    5. Venkatesh, M. and G. Raghavan, "An overview of dielectric properties measuring techniques," Journal of Canadian Biosystems Engineering, Vol. 47, No. 7, 15-30, 2005.

    6. Sheen, J., "A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region," Measurement Science and Technology, Vol. 19, No. 5, 055701, 2008.
    doi:10.1088/0957-0233/19/5/055701

    7. Eremenko, Z., A. Shubnyi, N. Anikina, T. Zhilyakova, V. Gerzhikova, and V. Skresanov, "Complex permittivity measurement of high loss liquids and its application to wine analysis," Electromagnetic Waves, 403-422, INTECH Open Access Publisher, 2011.

    8. Faktorova, D., "Complex permittivity of biological materials measurement at microwave frequencies," Measurement Science Review, Vol. 7, No. 2, 12-15, 2007.

    9. Nelson, S. O., "Dielectric properties measurement techniques and applications," Transactions of the ASAE, Vol. 42, No. 2, 523-529, 1999.
    doi:10.13031/2013.13385

    10. Peyman, A., S. Holden, and C. Gabriel, "Dielectric properties of tissues at microwave frequencies," Mobile Telecomm and Health Research Program, RUM3, 2005.

    11. Lee, C., B. Bai, Q. Song, Z. Wang, and G. Li, "Open complementary split-ring resonator sensor for Dropping-based liquid dielectric characterization," IEEE Sensors Journal, 1-1, 2019.

    12. Mohd Bahar, A., Z. Zakaria, M. Md Arshad, R. Alahnomi, A. Abu-Khadrah, and W. Sam, "Microfluidic biochemical sensor based on circular SIW-DMS approach for dielectric characterization application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, 2019.
    doi:10.1002/mmce.21801

    13. Bahar, A., Z. Zakaria, A. Isa, Y. Dasril, and R. Alahnomi, "The CSIW resonator sensor for microfluidic characterization using defected ground structure," Journal of Telecommunication, Electronic and Computer Engineering, Vol. 10, No. 2–6, 35-40, 2018.

    14. Caleffo, R. and F. Correra, "Liquids electrical characterization sensor using a hybrid SIW resonant cavity," Microwave and Optical Technology Letters, Vol. 60, No. 2, 445-449, 2018.
    doi:10.1002/mop.30983

    15. Rowe, D. J., S. Al-Malki, A. A. Abduljabar, A. Porch, D. A. Barrow, and C. J. Allender, "Improved split-ring resonator for microfluidic sensing," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 3, 689-699, March 2014.
    doi:10.1109/TMTT.2014.2299514

    16., , Ansoft, HFSS — High Frequency Electromagnetic Field Simulation software: Version 13, http://ansoft.com/Products/Simulation+Technology/Electronics/Signals+Integrity/ANSYS+HFSS, 2014.

    17. Ejaz, T., S. A. A. Shah, H. U. Rahman, and T. Zaidi, "Improved shield design for split-ring resonator," Proceedings of the 3rd International Conference on Technological Advances in Electrical, Electronics and Computer Engineering, 207-211, Beirut, Lebanon, 2015.

    18. Balanis, C. A., Advanced Engineering Electomagnetics, 2nd Edition, John Wiley & Sons, United States of America, 2012.

    19. Clarke, R. N., A. P. Gregory, D. Cannell, M. Patrick, S. Wylie, I. Youngs, and G. Hill, Guide to the Characterisation of Dielectic Materials at RF and Microwave Frequencies, Institute of Measurement and Control, Teddington, 2003.

    20. Gregory, A. P. and R. N. Clarke, "Tables of the complex permittivity of dielectric reference liquids at frequencies up to 5 GHz,", Report MAT 23, National Physical Laboratory, Teddington, UK, 2012.

    21. Gregory, A. P. and R. N. Clarke, "A review of RF and microwave techniques for dielectric measurements on polar liquids," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 13, No. 4, 727-743, August 2006.
    doi:10.1109/TDEI.2006.1667730

    22. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
    doi:10.1002/0470020466

    23. Pozar, D. M., Microwave Engineering, 4th Edition, Wiley, New York, United States of America, 2012.

    24. Abdulnabi, R. A., "The cavity perturbation method for the measurement of the dielectric properties of (polystyrene/carbon black) composite," Journal of Basrah Researcher (Science), Vol. 37, No. 1, 1-7, 2011.

    25. Hardy, W. N. and L. A. Whitehead, "Split-ring resonator for use in magnetic resonance from 200–2000 MHz," Review of Scientific Instruments, Vol. 52, No. 2, 213-216, February 1981.
    doi:10.1063/1.1136574

    26. Froncisz, W. and J. S. Hyde, "The loop-gap resonator: A new microwave lumped circuit ESR sample structure," Journal of Magnetic Resonance (1969), Vol. 47, No. 3, 515-521, 1982.
    doi:10.1016/0022-2364(82)90221-9

    27. Mehdizadeh, M. and T. Ishii, "Electromagnetic field analysis and calculation of the resonance characteristics of the loop-gap resonator," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 7, 1113-1118, July 1989.
    doi:10.1109/22.24556

    28. Mehdizadeh, M., T. Ishii, J. S. Hyde, and W. Froncisz, "Loop-gap resonator: A lumped mode microwave resonant structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, No. 12, 1059-1064, 1983.
    doi:10.1109/TMTT.1983.1131661

    29. Ejaz, T., H. U. Rahman, S. A. A. Shah, and T. Zaidi, "A comparative analysis of split-ring resonator models," Proceedings of the International Conference on Informatics, Electronics and Vision (ICIEV), 61, Fukuoka, Japan, June 2015.

    30. Hong, J. S. and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave openloop resonator filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, 2358-2365, 1997.
    doi:10.1109/22.643844

    31. Eaton, S. S., G. R. Eaton, and L. Berliner, Biological Magnetic Resonance: Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics, Vol. 24, Plenum Press, 2005.
    doi:10.1007/b111471

    32. Sydoruk, O., E. Tatartschuk, E. Shamonina, and L. Solymar, "Analytical formulation for the resonant frequency of split rings," Journal of Applied Physics, Vol. 105, No. 1, 014903, 2009.
    doi:10.1063/1.3056052

    33. Facer, G. R., D. A. Notterman, and L. L. Sohn, "Dielectric spectroscopy for bioanalysis: From 40Hz to 26.5GHz in a microfabricated wave guide," Applied Physics Letters, Vol. 78, No. 7, 996-998, 2001.
    doi:10.1063/1.1347020

    34. Sihvola, A., "Dielectric polarization and particle shape effects," Journal of Nanomaterial, Vol. 2007, No. 1, 5, 2007.

    35. Ejaz, T., H. U. Rahman, T. Zaidi, T. Tauqeer, and S. A. A. Shah, "Analysis, simulation and experimental verification of split-ring resonator," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2358-2363, October 2015.
    doi:10.1002/mop.29344

    36. Ejaz, T., H. U. Rahman, T. Tauqeer, A. Masood, and T. Zaidi, "Shield optimization and formulation of regression equations for split-ring resonator," Mathematical Problems in Engineering, Vol. 2016, 1-10, 2016.
    doi:10.1155/2016/4754192

    37., , Marienfeld cat. no. 29402023: http://www.marienfeld superior.com/index.php/capillarytubes/ articles/capillary-tubes-for-the-determination-of-melting point.html.

    38. Mathematica Software, Version 9.0, Inc. Wolfram Research, https://www.wolfram.com-/mathematica/, 2013.