In this article, the body shape and complex permittivity determination employing inverse electromagnetic scattering problem solution for two-dimensional cases is considered. The method of auxiliary sources (MAS) is used as a mathematical apparatus. Several body shape cases are considered, and the efficiency of the approach is shown. The program package is created based on this method, and the numerical experiment results are presented.
2. Tabatadze, V., D. Kakulia, G. Saparishvili, R. Zaridze, and N. Uzunoglou, "Development of an new efficient numerical approach for object recognition," Journal of Applied Electromagnetism, Vol. 12, 35-36, Nov. 18, 2008.
3. Tabatadze, V., D. Kakulia, G. Saparishvili, R. Zaridze, and N. Uzunoglou, "Development of a new efficient numerical approach for buried object recognition," Sensing and Imaging: An International Journal, Vol. 1, No. 1, 35-56, 2011.
doi:10.1007/s11220-011-0060-7
4. Zaridze, R., G. Bit-Babik, K. Tavzarashvili, N. K. Uzunoglu, and D. Economou, "The method of auxiliary sources (MAS) — Solution of propagation, diffraction and inverse problems using MAS," Appl. Comput. Electromagn., 33-45, Springer, 2000.
doi:10.1007/978-3-642-59629-2_3
5. Karacuha, E., "Determination of the orientation of cylindrical bodies buried in a slab from the scattering date," MMET’96, VIth Int. Conf. Math. Methods Electromagn. Theory Proc., 444-448, IEEE, 1996.
doi:10.1109/MMET.1996.565757
6. Peterson, E., "The σ-orientation," Form. Geom. Bordism Oper., 219-282, 2018, doi: 10.1017/9781108552165.008.
doi:10.1017/9781108552165.008
7. Idemen, M. and I. Akduman, "On inverse scattering problems related to cylindrical bodies with unknown orientations," Wave Motion, Vol. 17, 33-48, 1993.
doi:10.1016/0165-2125(93)90087-V
8. Idemen, M. and I. Akduman, "Some geometrical inverse problems connected with two-dimensional static fields," SIAM J. Appl. Math., Vol. 48, 703-718, 1988.
doi:10.1137/0148040
9. Anastassiu, H. T., D. I. Kaklamani, D. P. Economou, and O. Breinbjerg, "Electromagnetic scattering analysis of coated conductors with edges using the method of auxiliary sources (MAS) in conjunction with the standard impedance boundary condition (SIBC)," IEEE Trans. Antennas Propag., Vol. 50, 59-66, 2002.
doi:10.1109/8.992562
10. Abubakar, A., P. M. van den Berg, and S. Y. Semenov, "Two- and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, 2003.
doi:10.1163/156939303322235798
11. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, Classics in Applied Mathematics, SIAM, Philadelphia, PA, 2013.
doi:10.1137/1.9781611973167
12. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edition, Vol. 93, Applied Mathematical Sciences, 3rd edition, Vol. 93, Applied Mathematical Sciences, Springer-Verlag, New York, NY, 2013.
doi:10.1007/978-1-4614-4942-3
13. Meng, Q., et al., "Microwave imaging under oblique illumination," Sensors, Vol. 16, No. 7, 1046, 2016.
doi:10.3390/s16071046
14. Gintides, D. and L. Mindrinos, "The direct scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder," J. Integral Equations Appl., Vol. 28, No. 1, 91-122, 2016.
doi:10.1216/JIE-2016-28-1-91
15. Leviatan, Y., "Analytic continuation considerations when using generalized formulations for scattering problems," IEEE Trans. Antennas Propag., Vol. 38, No. 8, 1259-1263, Aug. 1990.
doi:10.1109/8.56964
16. Barnett, A. H. and T. Betcke, "Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains," J. Comput. Phys., Vol. 227, 7003-7026, Jul. 2008.
17. Tsitsas, N. L., G. P. Zouros, G. Fikioris, and Y. Leviatan, "On methods employing auxiliary sources for 2-D electromagnetic scattering by non-circular shapes," IEEE Trans. Antennas Propag., Vol. 66, No. 10, 5443-5452, 2018.
doi:10.1109/TAP.2018.2855963
18. Idemen, M., "On different possibilities offered by the Born approximation in inverse scattering problems," Inverse Problems, Vol. 5, No. 6, 1-8, 1989.
doi:10.1088/0266-5611/5/6/012