Microwave radiometer is a high-sensitivity ``camera'', which realizes high-resolution imaging by receiving the natural radiation signal in microwave band from the observation scene. Due to the imperfection of the system hardware, the measured data include not only the radiated signal of interest but also the noise generated by the system hardware itself. These unexpected noises will affect the imaging performance of the system, especially for the synthetic aperture interferometric radiometer (SAIR). In this paper, the noise behavior of the SAIR system is analyzed and modeled for the first time. Based on the noise behavior model, a method is proposed to pick the optimal averaging time for imaging with high fidelity in the SAIR system. Some experiments are carried out to verify the correctness of the noise behavior model and the optimal averaging time picking method for SAIR. With the noise behavior model and the optimal averaging time picking method, it can provide an effective guide for the SAIR system design, error correction, and reconstruction.
2. Carmona, A. J., "Application of interferometric radiometry to earth observation,", Univ. Politècnica Catalunya, Barcelona, Spain, 1997.
3. Mann, C., "A compact real time passive terahertz imager," Proceedings of SPIE, Vol. 6211, 1-5, 2006.
4. Luukanen, A., L. Gronberg, M. Gronholm, P. Lappalainen, M. Leivo, A. Rautiainen, A. Tamminen, J. Ala-Laurinaho, C. Dietlein, and E. Grossman, "Real-time passive terahertz imaging system for standoff concealed weapons imaging," Proceedings of SPIE, Vol. 7670, 1-8, 2010.
5. May, T., G. Zieger, S. Anders, V. Zakosarenko, M. Starkloff, H. G. Meyer, G. Thorwirth, and E. Kreysa, "Passive stand-off terahertz imaging with 1 hertz frame rate," Proceedings of SPIE, Vol. 6949, 1-8, 2008.
6. Su, K., Z. Liu, R. B. Barat, D. E. Gary, Z. Michalopoulou, and J. F. Federici, "Two dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system," Applied Optics, Vol. 49, No. 19, 13-19, 2010.
doi:10.1364/AO.49.000E13
7. Corbella, I., F. Torres, A. Camps, A. Colliander, M. Martín-Neira, S. Ribó, K. Rautiainen, N. Duffo, and M. Vall-llossera, "MIRAS end-to-end calibration: Application to SMOS L1 processor," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 5, 1126-1134, 2005.
doi:10.1109/TGRS.2004.840458
8. McMullan, K. D., M. A. Brown, M. Martin-Neira, W. Rits, S. Ekholm, J. Matri, and J. Lemanczyk, "SMOS: The payload," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 3, 594-605, 2008.
doi:10.1109/TGRS.2007.914809
9. Gaier, T., P. Kangaslahti, B. Lambrigtsen, I. Ramos-Perez, A. Tanner, D. McKague, C. Ruf, M. Flynn, Z. Zhang, R. Backhus, and D. Austerberry, "A 180 GHz prototype for a geostationary microwave imager/sounder-GeoSTAR-III," 2016 IEEE International Geoscience and Remote Sensing Symposium, 2021-2023, 2016.
doi:10.1109/IGARSS.2016.7729521
10. Land, D. V., A. P. Levick, and J. W. Hand, "The use of the Allen deviation for the measurement of the noise and drift performance of microwave radiometers," Measurement Science and Technology, Vol. 18, No. 7, 1917-1928, 2007.
doi:10.1088/0957-0233/18/7/018
11. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "Regularization imaging algorithm with accurate G matrix for near-field MMW synthetic aperture imaging radiometer," Progress In Electromagnetics Research B, Vol. 58, 193-203, 2014.
doi:10.2528/PIERB14011602
12. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702
13. Wells, J., W. Daywitt, and C. Miller, "Measurement of effective temperatures of microwave noise sources," IEEE Transactions on Instrumentation Measurement, Vol. 13, No. 1, 17-28, 1964.
doi:10.1109/TIM.1964.4313364
14. Ziel, A., Noise in Measurements, Chapter 7, Wiley, New York, 1976.
15. Cowley, A. M. and H. O. Sorensen, "Quantitative comparison of solid-state microwave detectors," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, No. 12, 588-602, 1967.
doi:10.1109/TMTT.1966.1126337
16. Barnes, J., A. Chi, L. Cutler, D. Healey, D. Leeson, T. McGunigal, Jr. Mullen, W. Smith, R. Sydnor, R. Vessot, and G. Winkler, "Characterization of frequency stability," IEEE Transactions on Instrumentation Measurement, Vol. 20, No. 2, 105-120, 1971.
doi:10.1109/TIM.1971.5570702
17. Allan, D., "Should the classical variance be used as a basic measure in standards metrology?," IEEE Transactions on Instrumentation Measurement, Vol. 36, No. 2, 646-654, 1987.
doi:10.1109/TIM.1987.6312761