Vol. 96

Latest Volume
All Volumes
All Issues
2020-09-24

An Extended Hybrid Analytical Model for Shielding Effectiveness Prediction of Multi-Cavity Structure with Numerous Apertures

By Wei Shen, Sen Wang, Wei Li, Hai Jin, and Hongliang Zhang
Progress In Electromagnetics Research M, Vol. 96, 181-190, 2020
doi:10.2528/PIERM20081201

Abstract

In this paper, we extend our previously published hybrid analytical model for estimation of shielding effectiveness of a dual-cavity structure with an aperture array to generalize the model for a wider range of applications. The aperture array in the center and off-center, higher order modes, and multi-cavity are taken into consideration, respectively. At last, comparations of the results calculated by the extended hybrid analytical model with those obtained by the simulation software CST are given. The results show that the extended hybrid analytical model for shielding effectiveness prediction of a three-cavity structure with numerous apertures has high precision and high efficiency.

Citation


Wei Shen, Sen Wang, Wei Li, Hai Jin, and Hongliang Zhang, "An Extended Hybrid Analytical Model for Shielding Effectiveness Prediction of Multi-Cavity Structure with Numerous Apertures," Progress In Electromagnetics Research M, Vol. 96, 181-190, 2020.
doi:10.2528/PIERM20081201
http://test.jpier.org/PIERM/pier.php?paper=20081201

References


    1. Araneo, R. and G. Lovat, "Fast MoM analysis of the shielding effectiveness of rectangular enclosures with apertures, metal plates, and conducting objects," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, No. 2, 274-283, 2009.
    doi:10.1109/TEMC.2008.2010456

    2. Nie, B.-L. and P.-A. Du, "Electromagnetic shielding performance of highly resonant enclosures by a combination of the FETD and extended Prony's method," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 2, 320-327, 2013.
    doi:10.1109/TEMC.2013.2279404

    3. Kuo, C.-W. and C.-M. Kuo, "Finite-difference time-domain analysis of the shielding effectiveness of metallic enclosures with apertures using a novel subgridding algorithm," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 5, 1595-1601, 2016.
    doi:10.1109/TEMC.2016.2572210

    4. Basyigit, I. B., H. Dogan, and S. Helhel, "Simulation of metallic enclosures with apertures on electrical shielding effectiveness," 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), 1082-1084, IEEE, 2017.

    5. Georgakopoulos, S. V., C. R. Birtcher, and C. A. Balanis, "HIRF penetration through apertures: FDTD versus measurements," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 3, 282-294, 2001.
    doi:10.1109/15.942601

    6. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
    doi:10.2528/PIER07041905

    7. Baum, C. E., T. K. Liu, and F. M. Tesche, "On the analysis of general multiconductor transmission-line networks," Interaction Note, Vol. 350, No. 6, 467-547, 1978.

    8. Baum, C. E., "Including apertures and cavities in the BLT formalism," Electromagnetics, Vol. 25, No. 7–8, 623-635, 2005.
    doi:10.1080/02726340500214852

    9. Kan, Y., L.-P. Yan, X. Zhao, H.-J. Zhou, Q. Liu, and K.-M. Huang, "Electromagnetic topology based fast algorithm for shielding effectiveness estimation of multiple enclosures with apertures," Acta Physica Sinica, Vol. 65, No. 3, 030702-030702, 2016.

    10. Robinson, M. P., J. Turner, D.W. Thomas, J. Dawson, M. Ganley, A. Marvin, S. Porter, T. Benson, and C. Christopoulos, "Shielding effectiveness of a rectangular enclosure with a rectangular aperture," Electronics Letters, Vol. 32, No. 17, 1559-1560, 1996.
    doi:10.1049/el:19961030

    11. Robinson, M. P., T. M. Benson, C. Christopoulos, J. F. Dawson, M. Ganley, A. Marvin, S. Porter, and D. W. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 3, 240-248, 1998.
    doi:10.1109/15.709422

    12. Fang, C.-H., S. Zheng, H. Tan, D. Xie, and Q. Zhang, "Shielding effectiveness measurements on enclosures with various aperture by both mode-tuned reverberation chamber and GTEM cell methodologies," Progress In Electromagnetics Research B, Vol. 2, 103-114, 2008.

    13. Radivojevic, M. Vanja, R. Slavko, A. Viktorija, and N. Natasa, "The shielding effectiveness measurements of a rectangular enclosure perforated with slot aperture," 2017 International Conference on Smart Systems and Technologies (SST), 121-126, 2017.
    doi:10.1109/SST.2017.8188681

    14. Shourvarzi, A. and J. Mojtaba, "Shielding effectiveness estimation of a metallic enclosure with an aperture using S-parameter analysis: Analytic validation and experiment," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 537-540, 2016.
    doi:10.1109/TEMC.2016.2615525

    15. Thomas, D. W., A. C. Denton, T. Konefal, T. Benson, C. Christopoulos, J. Dawson, A. Marvin, S. J. Porter, and P. Sewell, "Model of the electromagnetic fields inside a cuboidal enclosure populated with conducting planes or printed circuit boards," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, No. 2, 161-169, 2001.
    doi:10.1109/15.925536

    16. Konefal, T., J. Dawson, and A. Marvin, "Improved aperture model for shielding prediction," IEEE Symposium on Electromagnetic Compatibility. Symposium Record (Cat. No. 03CH37446), 187-192, 2003.
    doi:10.1109/ISEMC.2003.1236589

    17. Dan, S., Y. Shen, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," International Symposium on Electromagnetic Compatibility, 361-364, IEEE, 2007.

    18. Dehkhoda, P., A. Tavakoli, and R. Moini, "An efficient and reliable shielding effectiveness evaluation of a rectangular enclosure with numerous apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, 208-212, 2008.
    doi:10.1109/TEMC.2007.911922

    19. Dehkhoda, P., A. Tavakoli, and R. Moini, "Fast calculation of the shielding effectiveness for a rectangular enclosure of finite wall thickness and with numerous small apertures," Progress In Electromagnetics Research, Vol. 86, 341-355, 2008.
    doi:10.2528/PIER08100803

    20. Ren, D., P.-A. Du, Y. He, K. Chen, J.-W. Luo, and D. G. Michelson, "A fast calculation approach for the shielding effectiveness of an enclosure with numerous small apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 4, 1033-1041, 2016.
    doi:10.1109/TEMC.2016.2547739

    21. Yin, M.-C. and P.-A. Du, "An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 448-456, 2016.
    doi:10.1109/TEMC.2016.2517163

    22. Shourvarzi, A. and M. Joodaki, "Using aperture impedance for shielding effectiveness estimation of a metallic enclosure with multiple apertures on different walls considering higher order modes," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 3, 629-637, 2017.
    doi:10.1109/TEMC.2017.2738563

    23. Jin, H., H. Zhang, Y. Ma, K. Chen, and X. Sun, "An analytical hybrid model for the shielding effectiveness evaluation of a dual-cavity structure with an aperture array," Progress In Electromagnetics Research Letters, Vol. 91, 109-116, 2020.
    doi:10.2528/PIERL20033101