Vol. 117

Latest Volume
All Volumes
All Issues
2023-05-22

Low-Frequency Magnetic Shielding of Double-Layer Conducting Plates with Periodic Apertures: Experimental Observation of Great Improvement of Shielding Effectiveness by Slightly Separating the Two Plates

By Feiyan Zhou, Yan Wu, Lingyun Gu, Xuefeng Bai, Yan Wu, Yang Wang, Dingyu Qin, and Chongqing Jiao
Progress In Electromagnetics Research M, Vol. 117, 47-57, 2023
doi:10.2528/PIERM23022604

Abstract

This article focuses on the low-frequency magnetic shielding of double-layer conducting plates with periodic circular apertures. The shielding effectiveness (SE) is measured as the insertion loss of the plates when they are placed between a pair of coaxial loops, one for magnetic field emission and the other for receiving. Our experimental results show that the SE sharply increases with the layer-to-layer spacing increasing from zero to the aperture diameter. For aluminum plates with 1 mm thickness, 20 mm unit cell and 10 mm aperture diameter, the enhancement is approximately 10 dB and 20 dB for 3 mm and 9 mm spacing, respectively. In addition, the effect of the lateral deviation on the SE is evident only if the spacing is smaller than the aperture diameter.

Citation


Feiyan Zhou, Yan Wu, Lingyun Gu, Xuefeng Bai, Yan Wu, Yang Wang, Dingyu Qin, and Chongqing Jiao, "Low-Frequency Magnetic Shielding of Double-Layer Conducting Plates with Periodic Apertures: Experimental Observation of Great Improvement of Shielding Effectiveness by Slightly Separating the Two Plates," Progress In Electromagnetics Research M, Vol. 117, 47-57, 2023.
doi:10.2528/PIERM23022604
http://test.jpier.org/PIERM/pier.php?paper=23022604

References


    1. Frikha, A., et al., "Magnetic shielding effectiveness of enclosures in near field at low frequency for automotive applications," IEEE Trans. Electromagn. Compat., Vol. 57, No. 6, 1481-1490, Dec. 2015.
    doi:10.1109/TEMC.2015.2463677

    2. Lee, S., et al., "Low leakage electromagnetic field level and high efficiency using a novel hybrid loop-array design for wireless high power transfer system," IEEE Trans. Ind. Electron., Vol. 66, No. 6, 4356-4367, Jun. 2019.
    doi:10.1109/TIE.2018.2851988

    3. Zhou, Y., L. Zhang, S. Xiu, and W. Hao, "Design and analysis of platform shielding for wireless charging tram," IEEE Access, Vol. 7, 129443-129451, Sep. 2019.
    doi:10.1109/ACCESS.2019.2939197

    4. Zhang, J., T. Lu, W. Zhang, X. Bian, and X. Cui, "Characteristics and in uence factors of radiated disturbance induced by IGBT switching," IEEE Trans. Power Electron., Vol. 34, No. 12, 11833-11842, Dec. 2019.
    doi:10.1109/TPEL.2019.2913463

    5. Ma, D., et al., "Study of shielding ratio of cylindrical ferrite enclosure withgaps and holes," IEEE Sens. J., Vol. 19, No. 15, 6085-6092, Aug. 2019.
    doi:10.1109/JSEN.2019.2904719

    6. Giaccone, L., V. Cirimele, and A. Canova, "Mitigation solutions for the magnetic field produced by MFDC spot welding guns," IEEE Trans. Electromagn. Compat., Vol. 62, No. 1, 83-92, Feb. 2020.
    doi:10.1109/TEMC.2018.2877805

    7. Kellogg, J., "Navigating the selection of magnetic resonance imaging shielding systems," IEEE Trans. Electromagn. Compat., Vol. 3, No. 1, 43-46, Mar. 2021.

    8. Salvador, K., D. Harmel, L. Oliveira, S. Cabral, and H. Almaguer, "Study of the effectiveness of magnetic shielding for compact power transformers used on mobile applications," IEEE Latin Am. Trans., Vol. 18, No. 6, 1034-1040, Jun. 2020.
    doi:10.1109/TLA.2020.9099680

    9. Frikha, A., M. Bensetti, F. Duval, N. Benjelloun, F. Lafon, and L. Pichon, "A new methodology to predict the magnetic shielding effectiveness of enclosures at low frequency in the near field," IEEE Trans. Magn., Vol. 51, No. 3, 1-4, Mar. 2015.
    doi:10.1109/TMAG.2014.2362953

    10. Lovat, G., P. Burghignoli, R. Araneo, E. Stracqualursi, and S. Celozzi, "Closed-form LF magnetic shielding effectiveness of thin planar screens in coplanar loops configuration," IEEE Trans. Electromagn. Compat., Vol. 63, No. 2, 631-635, Apr. 2021.
    doi:10.1109/TEMC.2020.3007864

    11. Jiao, C., et al., "Low-frequency magnetic shielding of planar shields: A unified wave impedance formula for the transmission line analogy," IEEE Trans. Electromagn. Compat., Vol. 63, No. 4, 1046-1057, Feb. 17, 2021.
    doi:10.1109/TEMC.2021.3052779

    12. Zhang, Z., X. Yang, C. Jiao, Y. Yang, and J. Wang, "Analytical model for low-frequency magnetic field penetration through a circular aperture on a perfect electric conductor plate," IEEE Trans. Electromagn. Compat., Vol. 63, No. 5, 1599-1604, Apr. 6, 2021.
    doi:10.1109/TEMC.2021.3065064

    13. Qin, D. and C. Jiao, "Low-frequency magnetic shielding of planar screens: Effects of loop radius and loop-to-loop distance," IEEE Trans. Electromagn. Compat., Vol. 64, No. 2, 367-377, 2022.
    doi:10.1109/TEMC.2021.3118543

    14. Park, H. H., "Analytic magnetic shielding effectiveness of multiple long slots on a metal plate using rectangular loops," IEEE Trans. Electromagn. Compat., Vol. 62, No. 5, 1971-1979, Oct. 2020.
    doi:10.1109/TEMC.2019.2954671

    15. Bai, W., F. Ning, X. Yang, C. Jiao, and L. Chen, "Low frequency magnetic shielding effectiveness of a conducting plate with periodic apertures," IEEE Trans. Electromagn. Compat., Vol. 63, No. 1, 30-37, Feb. 2021.
    doi:10.1109/TEMC.2020.2986249

    16. Criel, S., L. Martens, and D. De Zutter, "Theoretical and experimental near-field characterization of perforated shields," IEEE Trans. Electromagn. Compat., Vol. 36, No. 3, 161-168, Aug. 1994.
    doi:10.1109/15.305460

    17. Araneo, R., G. Lovat, and S. Celozzi, "Shielding effectiveness of periodic screens against finite high-impedance near-field sources," IEEE Trans. Electromagn. Compat., Vol. 53, No. 3, 706-716, Aug. 2011.
    doi:10.1109/TEMC.2010.2081367

    18. Sarto, M. S., S. Greco, and A. Tamburrano, "Shielding effectiveness of protective metallic wire meshes: EM modeling and validation," IEEE Trans. Electromagn. Compat., Vol. 56, No. 3, 615-621, Jun. 2014.
    doi:10.1109/TEMC.2013.2292715

    19. Hyun, S., I. Jung, I. Hong, C. Jung, E. Kim, and J. Yook, "Modified sheet inductance of wire mesh using effective wire spacing," IEEE Trans. Electromagn. Compat., Vol. 58, No. 3, 911-914, Jun. 2016.
    doi:10.1109/TEMC.2015.2502603

    20. Naranjo-Villamil, S., C. Guiffaut, J. Gazave, and A. Reineix, "Lightning-induced magnetic fields inside grid-like shields: An improved formula complemented by a polynomial chaos expansion," IEEE Trans. Electromagn. Compat., Vol. 63, No. 2, 558-570, Apr. 2021.
    doi:10.1109/TEMC.2021.3056320

    21. Bai, W., A. Guo, T. Li, R. Cheng, and C. Jiao, "A multi-stage model for the electromagnetic shielding effectiveness prediction of an infinite conductor plane with periodic apertures," IEEE Access, Vol. 7, 61896-61903, 2019.
    doi:10.1109/ACCESS.2019.2916145

    22. Sun, X., B. Wei, Y. Li, and J. Yang, "A new model for analysis of the shielding effectiveness of multilayer infinite metal meshes in a wide frequency range," IEEE Trans. Electromagn. Compat., Vol. 64, No. 1, 102-110, Sep. 1, 2021.
    doi:10.1109/TEMC.2021.3104119

    23. Andrieu, G., et al., "Homogenization of composite panels from a near-field magnetic shielding effectiveness measurement," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 700-703, Jun. 2012.
    doi:10.1109/TEMC.2012.2186455

    24. Yang, X., Z. Zhang, F. Ning, C. Jiao, and L. Chen, "Shielding effectiveness analysis of the conducting spherical shell with a circular aperture against low-frequency magnetic fields," IEEE Access, Vol. 8, 79844-79850, 2020.
    doi:10.1109/ACCESS.2020.2988709

    25. MWS. Framingham, MA, , USA, 2015. CST Computer Simulation Technology, 2011. [Online]. Available: http://www.cst.com/Content/Products/MWS/Overview.aspx.