Vol. 168

Latest Volume
All Volumes
All Issues

Classical and Quantum Electromagnetic Interferences: What Is the Difference?

By Dong-Yeop Na and Weng Cho Chew
Progress In Electromagnetics Research, Vol. 168, 1-13, 2020


The zeroing of second order correlation functions between output fields after interferences in a 50/50 beam splitter has been accepted decades-long in the quantum optics community as an indicator of the quantum nature of lights. But, a recent work [1] presented some notable discussions and experiments that classical electromagnetic fields can still exhibit the zero correlation under specific conditions. Here, we examine analytically classical and quantum electromagnetic field interferences in a 50/50 beam splitter in the context of the second order correlation function for various input conditions. Adopting the Heisenberg picture in quantum electromagnetics, we examine components of four-term interference terms in the numerator of second order correlation functions and elucidate their physical significance. As such, we reveal the fundamental difference between the classical and quantum interference as illustrated by the Hong-Ou-Mandel (HOM) effect. The quantum HOM effect is strongly associated with: (1) the commutator relation that does not have a classical analogue; (2) the property of Fock states needed to stipulate the one-photon quantum state of the system; and (3) a destructive wave interference effect. Here, (1) and (2) imply the indivisibility of a photon. On the contrary, the classical HOM effect requires the presence of two destructive wave interferences without the need to stipulate a quantum state.


Dong-Yeop Na and Weng Cho Chew, "Classical and Quantum Electromagnetic Interferences: What Is the Difference?," Progress In Electromagnetics Research, Vol. 168, 1-13, 2020.


    1. Sadana, S., D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, and U. Sinha, "Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity," Phys. Rev. A, Vol. 100, 013839, 2019.

    2. Wikipedia, Newton’s rings, https://en.wikipedia.org/wiki/Newton's_rings.

    3. Phase-locked loop, https://en.wikipedia.org/wiki/Phase-locked_loop.

    4. Goodman, J. W., Statistical Optics, Wiley-Interscience, New York, 1985.

    5. Loudon, R., "The Quantum Theory of Light," OUP Oxford, 2000.

    6. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, UK, 1995.

    7. Gerry, C. and P. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, UK, 2004.

    8. Fox, M., Quantum Optics: An Introduction, Vol. 15, OUP Oxford, Oxford, UK, 2006.

    9. Hanbury Brown, R. and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, Vol. 177, No. 4497, 27-29, 1956.

    10. Hong, C. K., Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett., Vol. 59, 2044-2046, Nov. 1987.

    11. Fearn, H. and R. Loudon, "Quantum theory of the lossless beam splitter," Optics Communications, Vol. 64, 485-490, 1987.

    12. Kaltenbaek, R., B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, "Experimental interference of independent photons," Phys. Rev. Lett., Vol. 96, 240502, Jun. 2006.

    13. Prasad, S., M. O. Scully, and W. Martienssen, "A quantum description of the beam splitter," Optics Communications, Vol. 62, No. 3, 139-145, 1987.

    14. Ou, Z. Y., "Quantum theory of fourth-order interference," Phys. Rev. A, Vol. 37, 1607-1619, 1988.

    15. Ham, B. S., "The origin of anticorrelation for photon bunching on a beam splitter," Scientific Reports, Vol. 10, 7309, 2020.

    16. Branczyk, A. M., "Hong-Ou-Mandel interference,", arXiv:1711.00080, 2017.

    17. Di Martino, G., Y. Sonnefraud, M. S. Tame, S. Kena-Cohen, F. Dieleman, K. Ozdemir, M. S. Kim, and S. A. Maier, "Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect," Phys. Rev. Applied, Vol. 1, 034004, 2014.

    18. Longo, P., J. H. Cole, and K. Busch, "The Hong-Ou-Mandel effect in the context of few-photon scattering," Opt. Express, Vol. 20, 12 326-12 340, 2012.

    19. Lang, C., C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais, and A. Wallraff, "Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies," Nature Physics, Vol. 9, 345-348, 2013.

    20. Lopes, R., A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook, "Atomic Hong-Ou-Mandel experiment," Nature, Vol. 520, 66-68, 2015.

    21. Kobayashi, T., R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, "Frequency-domain Hong-Ou-Mandel interference," Nature Photonics, Vol. 10, 441-444, 2016.

    22. Imany, P., O. D. Odele, M. S. Alshaykh, H.-H. Lu, D. E. Leaird, and A. M. Weiner, "Frequency-domain Hong-Ou-Mandel interference with linear optics," Opt. Lett., Vol. 43, No. 12, 2760-2763, 2018.

    23. Rohde, P. P. and T. C. Ralph, "Frequency and temporal effects in linear optical quantum computing," Phys. Rev. A, Vol. 71, 032320, 2005.

    24. Rohde, P. P., T. C. Ralph, and M. A. Nielsen, "Optimal photons for quantum-information processing," Phys. Rev. A, Vol. 72, 052332, 2005.

    25. Mahrlein, S., S. Oppel, R. Wiegner, and J. von Zanthier, "Hong-Ou-Mandel interference without beam splitters," Journal of Modern Optics, Vol. 64, 921-929, 2017.

    26. Kim, M. S., W. Son, V. Buzek, and P. L. Knight, "Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement," Phys. Rev. A, Vol. 65, 032323, 2002.

    27. Walschaers, M., "Signatures of many-particle interference," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 53, 043001, 2020.

    28. Deng, Y.-H., H. Wang, X. Ding, Z.-C. Duan, J. Qin, M.-C. Chen, Y. He, Y.-M. He, J.-P. Li, Y.- H. Li, L.-C. Peng, E. S. Matekole, T. Byrnes, C. Schneider, M. Kamp, D.-W. Wang, J. P. Dowling, S. Hofling, C.-Y. Lu, M. O. Scully, and J.-W. Pan, "Quantum interference between light sources separated by 150 million kilometers," Phys. Rev. Lett., Vol. 123, 080401, 2019.

    29. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand, 1990.

    30. Electromagnetic field theory, Lecture Notes for ECE 604 at Purdue U, 2020, https://engineering.purdue.edu/wcchew/ece604s20/EMFTAll.pdf.

    31. Na, D.-Y., J. Zhu, F. L. Teixeira, and W. C. Chew, "Quantum information propagation preserving computational electromagnetics,", arXiv preprint arXiv:1911.00947, 2019.

    32. Na, D.-Y., J. Zhu, W. C. Chew, and F. L. Teixeira, "Quantum information preserving computational electromagnetics," Phys. Rev. A, Vol. 102, No. 1, 013711, Jul. 2020.

    33. Chew, W. C., A. Y. Liu, C. Salazar-Lazaro, and W. E. I. Sha, "Quantum electromagnetics: A new look — Part I and Part II," J. Multiscale and Multiphys. Comput. Techn., Vol. 1, 73-97, 2016.

    34. Kirk, D. E., Optimal Control Theory: An Introduction, Courier Corporation, 2004.

    35. Schrodinger, E., "An undulatory theory of the mechanics of atoms and molecules," Phys. Rev., Vol. 28, No. 6, 1049, 1926.

    36. Chew, W., A. Liu, C. Salazar-Lazaro, D.-Y. Na, and W. Sha, "Hamilton equations, commutator, and energy conservation," Quantum Reports, Vol. 1, 295-303, 2019.

    37. Louisell, W. H. and W. H. Louisell, Quantum Statistical Properties of Radiation, Vol. 7, Wiley, New York, 1973.

    38. Haken, H., Quantum Field Theory of Solids, an Introduction, North-Holland, 1976.

    39. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, Wiley-VCH, New York, NY, USA, 1988.

    40. Vogel, W. and D.-G. Welsch, "Quantum Optics," John Wiley & Sons, 2006.

    41. Walls, D. F. and G. J. Milburn, Quantum Optics, Springer Science & Business Media, 2007.

    42. Scheel, S. and S. Y. Buhmann, "Macroscopic quantum electrodynamics," Acta Physica Slovaca, Vol. 58, 675-809, 2008.

    43. Garrison, J. and R. Chiao, Quantum Optics, Oxford University Press, Oxford, UK, 2008.

    44. Gottfried, K. and T.-M. Yan, Quantum Mechanics: Fundamentals, CRC Press, Boca Raton, FL, USA, 2018.

    45. Milonni, P., An Introduction to Quantum Optics and Quantum Fluctuations, Oxford University Press, 2019.

    46. Miller, D. A., Quantum Mechanics for Scientists and Engineers, Cambridge University Press, Cambridge, UK, 2008.

    47. Chew, W. C., "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC,", 2016, http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf.

    48. Gerry, C. C. and K. M. Bruno, The Quantum Divide: Why Schrodinger's Cat is Either Dead or Alive, Oxford University Press, Oxford, UK, 2013.

    49. Glauber, R. J., "The quantum theory of optical coherence," Phys. Rev., Vol. 130, 2529-2539, 1963.