Vol. 168

Latest Volume
All Volumes
All Issues

Superscattering of Light in Refractive-Index Near-Zero Environments

By Chan Wang, Chao Qian, Hao Hu, Lian Shen, Zuo Jia Wang, Huaping Wang, Zhiwei Xu, Baile Zhang, Hongsheng Chen, and Xiao Lin
Progress In Electromagnetics Research, Vol. 168, 15-23, 2020


Enhancing the scattering of light from subwavelength structures is of both fundamental and practical significance. While the scattering cross section from each channel cannot exceed the single-channel limit, it is recently reported that the total cross section can far exceed this limit if one overlaps the contribution from many channels. Such a phenomenon about enhancing the scattering from subwavelength structures in free space is denoted as the superscattering in some literature. However, the scatterer in practical scenarios is not always in free space but may be embedded in environments with non-unity refractive index n. The influence of environments on the superscattering remains elusive. Here the superscattering from subwavelength structures in the isotropic environment with near-zero index are theoretically investigated. Importantly, a smaller n can lead to a larger total cross section for superscattering. The underlying mechanism is that a smaller n can give rise to a larger single-channel limit. Our work thus indicates that the scattering from subwavelength structures can be further enhanced if one simultaneously maximizes the single-channel limit and the contribution from many channels.


Chan Wang, Chao Qian, Hao Hu, Lian Shen, Zuo Jia Wang, Huaping Wang, Zhiwei Xu, Baile Zhang, Hongsheng Chen, and Xiao Lin, "Superscattering of Light in Refractive-Index Near-Zero Environments," Progress In Electromagnetics Research, Vol. 168, 15-23, 2020.


    1. Aizpurua, J., P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, F. J. Garcıa de Abajo, "Optical properties of gold nanorings," Phys. Rev. Lett., Vol. 90, 057401, 2003.

    2. Tribelsky, M. I. and B. S. Luk’Yanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.

    3. Tang, L., S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. Miller, "Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna," Nat. Photon., Vol. 2, 226-229, 2008.

    4. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, 2009.

    5. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater., Vol. 9, 205-213, 2010.

    6. Liu, N., M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, "Nanoantenna-enhanced gas sensing in a single tailored nanofocus," Nat. Mater., Vol. 10, 631-636, 2011.

    7. Yao, J., X. Yang, X. Yin, G. Bartal, and X. Zhang, "Three-dimensional nanometer-scale optical cavities of indefinite medium," PNAS, Vol. 108, 11327-11331, 2011.

    8. Chen, P.-Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, 5855-5863, 2011.

    9. Staude, I., A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, and I. Brener, "Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks," ACS Nano, Vol. 7, 7824-7832, 2013.

    10. Lin, X., Y. Yang, N. Rivera, J. J. Lopez, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljacic, "All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures," PNAS, Vol. 114, 6717-6721, 2017.

    11. Lin, X., S. Easo, Y. Shen, H. Chen, B. Zhang, J. D. Joannopoulos, M. Soljacic, and I. Kaminer, "Controlling Cherenkov angles with resonance transition radiation," Nat. Phys., Vol. 14, 816-821, 2018.

    12. Shi, X., X. Lin, I. Kaminer, F. Gao, Z. Yang, J. D. Joannopoulos, M. Soljacic, and B. Zhang, "Superlight inverse Doppler effect," Nat. Phys., Vol. 14, 1001-1005, 2018.

    13. Shen, L., X. Lin, M. Y. Shalaginov, T. Low, X. Zhang, B. Zhang, and H. Chen, "Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials," Appl. Phys. Rev., Vol. 7, 021403, 2020.

    14. Qian, C., X. Lin, X. Lin, J. Xu, Y. Sun, E. Li, B. Zhang, and H. Chen, "Performing optical logic operations by a diffractive neural network," Light Sci. Appl., Vol. 9, 59, 2020.

    15. Hu, H., X. Lin, J. Zhang, D. Liu, P. Genevet, B. Zhang, and Y. Luo, "Nonlocality induced Cherenkov threshold," Laser Photonics Rev., 2000149, 2020.

    16. Ruan, Z. and S. Fan, "Superscattering of light from subwavelength nanostructures," Phys. Rev. Lett., Vol. 105, 013901, 2010.

    17. Ruan, Z. and S. Fan, "Design of subwavelength superscattering nanospheres," Appl. Phys. Lett., Vol. 98, 043101, 2011.

    18. Miller, O. D., C. W. Hsu, M. H. Reid, W. Qiu, B. G. De Lacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to extinction by metallic nanoparticles," Phys. Rev. Lett., Vol. 112, 123903, 2014.

    19. Yang, Y., O. D. Miller, T. Christensen, J. D. Joannopoulos, and M. Soljacic, "Low-loss plasmonic dielectric nanoresonators," Nano Lett., Vol. 17, 3238-3245, 2017.

    20. Yu, Z., G. Veronis, S. Fan, and M. L. Brongersma, "Design of midinfrared photodetectors enhanced by surface plasmons on grating structures," Appl. Phys. Lett., Vol. 89, 151116, 2006.

    21. Hao, J., W. Yan, and M. Qiu, "Super-reflection and cloaking based on zero index metamaterial," Appl. Phys. Lett., Vol. 96, 101109, 2010.

    22. Mirzaei, A., I. V. Shadrivov, A. E. Miroshnichenko, and Y. S. Kivshar, "Cloaking and enhanced scattering of core-shell plasmonic nanowires," Opt. Express, Vol. 21, 10454-10459, 2013.

    23. Coenen, T., F. B. Arango, A. F. Koenderink, and A. Polman, "Directional emission from a single plasmonic scatterer," Nat. Commun., Vol. 5, 3250, 2014.

    24. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nat. Mater., Vol. 13, 139-150, 2014.

    25. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyperbolic metamaterials," Nat. Photon., Vol. 7, 948-957, 2013.

    26. Li, R., B. Zheng, X. Lin, R. Hao, S. Lin, W. Yin, E. Li, and H. Chen, "Design of ultracompact graphene-based superscatterers," IEEE J. Sel. Top. Quant., Vol. 23, 4600208, 2017.

    27. Qian, C., X. Lin, Y. Yang, F. Gao, Y. Shen, J. Lopez, I. Kaminer, B. Zhang, E. Li, M. Soljacic, and H. Chen, "Multifrequency superscattering from subwavelength hyperbolic structures," ACS Photon., Vol. 5, 1506-1511, 2018.

    28. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New Jersey, 1998.

    29. Brolo, A. G., E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, "Nanohole-enhanced Raman scattering," Nano Lett., Vol. 4, 2015-2018, 2004.

    30. Rakich, P. T., C. Reinke, R. Camacho, P. Davids, and Z. Wang, "Giant enhancement of stimulated Brillouin scattering in the subwavelength limit," Phys. Rev. X, Vol. 2, 011008, 2012.

    31. Foot, C. J., Atomic Physics, Oxford University Press, New York, 2005.

    32. Verslegers, L., Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, "From electromagnetically induced transparency to superscattering with a single structure: A coupled-mode theory for doubly resonant structures," Phys. Rev. Lett., Vol. 108, 083902, 2012.

    33. Zhou, M., L. Shi, J. Zi, and Z. Yu, "Extraordinarily large optical cross section for localized single nanoresonator," Phys. Rev. Lett., Vol. 115, 023903, 2015.

    34. Qian, C., X. Lin, Y. Yang, X. Xiong, H. Wang, E. Li, I. Kaminer, B. Zhang, and H. Chen, "Experimental observation of superscattering," Phys. Rev. Lett., Vol. 122, 063901, 2019.

    35. Kinkhabwala, A., Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, "Large singlemolecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Photon., Vol. 3, 654-657, 2009.

    36. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, 2006.

    37. Edwards, B., A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, 033903, 2008.

    38. Huang, X., Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials," Nat. Mater., Vol. 10, 582-586, 2011.

    39. Kocaman, S., M. Aras, P. Hsieh, J. McMillan, C. Biris, N. Panoiu, M. Yu, D. Kwong, A. Stein, and C. Wong, "Zero phase delay in negative-refractive-index photonic crystal superlattices," Nat. Photon., Vol. 5, 499-505, 2011.

    40. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, 286-287, 2013.

    41. Lu, L., H. Gao, and Z. Wang, "Topological one-way fiber of second Chern number," Nat. Commun., Vol. 9, 5384, 2018.

    42. Zhou, M., L. Ying, L. Lu, L. Shi, J. Zi, and Z. Yu, "Electromagnetic scattering laws in Weyl systems," Nat. Commun., Vol. 8, 1388, 2017.

    43. Wang, C., H. Wang, L. Shen, R. Abdi-Ghaleh, M. Y. Musa, Z. Xu, and B. Zheng, "Structure-induced hyperbolic dispersion in waveguides," IEEE Trans. Antennas & Propagation, Vol. 67, 5463-5468, 2019.

    44. Liberal, I., A. M. Mahmoud, Y. Li, B. Edwards, and N. Engheta, "Photonic doping of epsilon-near-zero media," Science, Vol. 355, 1058-1062, 2017.

    45. Zhang, Y., Y. Luo, J. B. Pendry, and B. Zhang, "Transformation-invariant metamaterials," Phys. Rev. Lett., Vol. 123, 067701, 2019.

    46. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, 023903, 2008.

    47. Moitra, P., Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-dielectric zero-index optical metamaterial," Nat. Photon., Vol. 7, 791-795, 2013.

    48. Li, Y., S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, and E. Mazur, "On-chip zero-index metamaterials," Nat. Photon., Vol. 9, 738-742, 2015.

    49. Chu, H., Q. Li, B. Liu, J. Luo, S. Sun, Z. Hang, L. Zhou, and Y. Lai, "A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials," Light Sci. Appl., Vol. 7, 50, 2018.

    50. Caldwell, J. D., A. V. Kretinin, Y. Chen, V. Giannini, M. M. Fogler, Y. Francescato, C. T. Ellis, J. G. Tischler, C. R. Woods, A. J. Giles, M. Hong, K. Watanabe, T. Taniguchi, S. A. Maier, and K. S. Novoselov, "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nat. Commun., Vol. 5, 5221, 2014.

    51. Woessner, A., M. B. Lundeberg, Y. Gao, A. Principi, P. Alonso-Gonzalez, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. H. L. Koppens, "Highly confined low-loss plasmons in graphene-boron nitride heterostructures," Nat. Mater., Vol. 14, 421-425, 2015.

    52. Ordal, M. A., R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Optics, Vol. 24, 4493-4499, 1985.