Vol. 169

Latest Volume
All Volumes
All Issues
2020-11-25

Designer Surface Plasmons Enable Terahertz Cherenkov Radiation (Invited)

By Jie Zhang, Xiaofeng Hu, Hongsheng Chen, and Fei Gao
Progress In Electromagnetics Research, Vol. 169, 25-32, 2020
doi:10.2528/PIER20102708

Abstract

Cherenkov radiation (CR) is a promising method to generate high-power terahertz (THz) electromagnetic (EM) waves, which are highly desired in numerous practical applications. For the purpose of economy energy, naturally occurred materials with flat surface (e.g. graphene), which can support highly-confined surface-plasmon-polariton (SPP) modes, have been proposed to construct high-efficiency terahertz CR source; however, these emerging materials cannot be easily fabricated nor flexibly designed. Here, we propose a designer-SPP metamaterial scheme to pursue terahertz CR. The metamaterial is a structure-decorated metal surface, which is compatible with planar fabrication, and can support SPP-like EM modes in terahertz frequencies, also named as designer SPP. Due to the structure dependence of designer SPP, its dispersions can be flexibly designed by changing the structure geometries as well as choosing proper dielectric medias. Numerical results clearly demonstrated this scheme. Our proposal may promise future high-efficiency and intense THz source with design flexibilities.

Citation


Jie Zhang, Xiaofeng Hu, Hongsheng Chen, and Fei Gao, "Designer Surface Plasmons Enable Terahertz Cherenkov Radiation (Invited)," Progress In Electromagnetics Research, Vol. 169, 25-32, 2020.
doi:10.2528/PIER20102708
http://test.jpier.org/PIER/pier.php?paper=20102708

References


    1. Siegel, P. H., "Terahertz technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 3, 910-928, 2002.
    doi:10.1109/22.989974

    2. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, No. 2, 97-105, 2007.
    doi:10.1038/nphoton.2007.3

    3. Horiuchi, N., "Endless applications," Nature Photonics, Vol. 4, No. 3, 140-140, 2010.
    doi:10.1038/nphoton.2010.16

    4. Akyildiz, I. F., J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications," Physical Communication, Vol. 12, 16-32, 2014.
    doi:10.1016/j.phycom.2014.01.006

    5. Hafez, H. A., et al., "Intense terahertz radiation and their applications," Journal of Optics, Vol. 18, No. 9, 093004, 2016.
    doi:10.1088/2040-8978/18/9/093004

    6. Wu, X. L., et al., "Green light stimulates terahertz emission from mesocrystal microspheres," Nature Nanotechnology, Vol. 6, No. 2, 103-106, 2011.
    doi:10.1038/nnano.2010.264

    7. Carr, G. L., et al., "High-power terahertz radiation from relativistic electrons," Nature, Vol. 420, No. 6912, 153-156, 2002.
    doi:10.1038/nature01175

    8. Gong, Y., et al., "Some advances in theory and experiment of high-frequency vacuum electron devices in China," IEEE Transactions on Plasma Science, Vol. 47, No. 5, 1971-1990, 2019.
    doi:10.1109/TPS.2019.2904124

    9. Cherenkov, P. A., "Visible emission of clean liquids by action of γ radiation," Dokl. Akad. Nauk SSSR, Vol. 2, No. 8, 451-454, 1934.

    10. Bolotovskii, B. M., "Vavilov-Cherenkov radiation: Its discovery and application," Physics-Uspekhi, Vol. 179, No. 11, 1161-1173, 2009.

    11. Pan, P., et al., "Development of 220 GHz and 340 GHz TWTs," 2016 IEEE 9th UK-Europe-China Workshopon Millimetre Waves and Terahertz Technologies (UCMMT), IEEE, 2016.

    12. Hou, Y., et al., "A novel ridge-vane-loaded folded-waveguide slow-wave structure for 0.22-THz traveling-wave tube," IEEE Transactions on Electron Devices, Vol. 60, No. 3, 1228-1235, 2013.
    doi:10.1109/TED.2013.2238941

    13. Pacey, T. H., et al., "Continuously tunable narrow-band terahertz generation with a dielectric lined waveguide driven by short electron bunches," Physical Review Accelerators and Beams, Vol. 22, No. 9, 091302, 2019.
    doi:10.1103/PhysRevAccelBeams.22.091302

    14. Cook, A. M., et al., "Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide," Physical Review Letters, Vol. 103, No. 9, 095003, 2009.
    doi:10.1103/PhysRevLett.103.095003

    15. Antipov, S., et al., "Experimental observation of energy modulation in electron beams passing through terahertz dielectric wakefield structures," Physical Review Letters, Vol. 108, No. 14, 144801, 2012.
    doi:10.1103/PhysRevLett.108.144801

    16. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer Science & Business Media, 2007.
    doi:10.1007/0-387-37825-1

    17. Liu, S., et al., "Surface polariton Cherenkov light radiation source," Physical Review Letters, Vol. 109, No. 15, 153902, 2012.
    doi:10.1103/PhysRevLett.109.153902

    18. Burlak, G., et al., "Plasmon-polariton oscillations in three-dimensional disordered nanotubes excited by a moving charge," Journal of Applied Physics, Vol. 126, No. 1, 013101, 2019.
    doi:10.1063/1.5098019

    19. Liu, F., et al., "Integrated Cherenkov radiation emitter eliminating the electron velocity threshold," Nature Photonics, Vol. 11, No. 5, 289-292, 2017.
    doi:10.1038/nphoton.2017.45

    20. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.
    doi:10.2528/PIER12071911

    21. Shi, X., et al., "Caustic graphene plasmons with Kelvin angle," Physical Review B, Vol. 92, No. 8, 081404.1-081404.5, 2015.

    22. Liu, S., et al., "Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam," Applied Physics Letters, Vol. 104, No. 20, 109, 2014.

    23. Gong, S., et al., "Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime," Applied Physics Letters, Vol. 106, No. 22, 223107, 2015.
    doi:10.1063/1.4922261

    24. Zhao, T., et al., "Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by cyclotron electron beam," Scientific Reports, Vol. 5, 16059, 2015.
    doi:10.1038/srep16059

    25. Zhao, T., et al., "Cherenkov terahertz radiation from graphene surface plasmon polaritons excited by an electron beam," Applied Physics Letters, Vol. 110, No. 23, 666-200, 2017.

    26. Zhao, T., et al., "Terahertz generation from Dirac semimetals surface plasmon polaritons excited by an electron beam," 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018), 2018.

    27. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
    doi:10.1126/science.1098999

    28. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, S97, 2005.
    doi:10.1088/1464-4258/7/2/013

    29. Hibbins, A. P., B. R. Evans, and J. R. Sambles, "Experimental verification of designer surface plasmons," Science, Vol. 308, No. 5722, 670-672, 2005.
    doi:10.1126/science.1109043

    30. Gao, Z., et al., "Spoof plasmonics: From metamaterial concept to topological description," Advanced Materials, Vol. 30, No. 31, 1706683, 2018.
    doi:10.1002/adma.201706683

    31. Liu, L., L. Ran, H. Guo, X. Chen, and Z. Li, "Broadband plasmonic circuitry enabled by channel domino spoof plasmons," Progress In Electromagnetics Research, Vol. 164, 109-118, 2019.
    doi:10.2528/PIER18120502

    32. Yu, N., et al., "Designer spoof surface plasmon structures collimate terahertz laser beams," Nature Materials, Vol. 9, No. 9, 730-735, 2010.
    doi:10.1038/nmat2822

    33. Cakmakyapan, S., et al., "Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating," Optics Express, Vol. 20, No. 24, 26636-26648, 2012.
    doi:10.1364/OE.20.026636

    34. Gao, X. and T. J. Cui, "Spoof surface plasmon polaritons supported by ultrathin corrugated metal strip and their applications," Nanotechnology Reviews, Vol. 4, No. 3, 239-258, 2015.
    doi:10.1515/ntrev-2014-0032

    35. Geng, Y. F., et al., "Topological surface plasmon polaritons," Acta PhysicaSinica, Vol. 68, No. 22, 224101, 2019.

    36. Zhu, J. F., et al., "Regenerated amplification of terahertz spoof surface plasmon radiation," New Journal of Physics, Vol. 21, No. 3, 033021, 2019.
    doi:10.1088/1367-2630/ab0aa4

    37. Liu, Y. Q., C. H. Du, and P. K. Liu, "Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide," IEEE Transactions on Plasma Science, Vol. 44, No. 12, 3288-3294, 2016.
    doi:10.1109/TPS.2016.2627576

    38. Liu, Y. Q., et al., "A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating," IEEE Transactions on Plasma Science, Vol. 44, No. 6, 930-937, 2016.
    doi:10.1109/TPS.2016.2556319

    39. Zhu, J. F., et al., "Free-electron-driven beam-scanning terahertz radiation," Optics Express, Vol. 27, No. 18, 26192-26202, 2019.
    doi:10.1364/OE.27.026192

    40. Zhu, J. F., et al., "Free-electron-driven multi-frequency terahertz radiation on a super-grating structure," IEEE Access, Vol. 7, 181184-181190, 2019.
    doi:10.1109/ACCESS.2019.2938270

    41. Zhou, Y., et al., "Coherent terahertz radiation generated from a square-shaped free-electron beam passing through multiple stacked layers with sub-wavelength holes," Journal of Physics D: Applied Physics, Vol. 48, No. 34, 345102, 2015.
    doi:10.1088/0022-3727/48/34/345102

    42. Liu, S., et al., "Electromagnetic diffraction radiation of a subwavelength-hole array excited by an electron beam," Physical Review E, Vol. 80, No. 3, 036602, 2009.
    doi:10.1103/PhysRevE.80.036602

    43. Kong, J. A., Electromagnetic Waves Theory, EMW Publishing, Cambridge, MA, 2008.