Vol. 178

Latest Volume
All Volumes
All Issues
2023-07-23

Reservoir Computing and Task Performing through Using High-β Lasers with Delayed Optical Feedback

By Tao Wang, Can Jiang, Qing Fang, Xingxing Guo, Yahui Zhang, Chaoyuan Jin, and Shuiying Xiang
Progress In Electromagnetics Research, Vol. 178, 1-12, 2023
doi:10.2528/PIER23040401

Abstract

Nonlinear photonic sources including semiconductor lasers have been recently utilized as ideal computation elements for information processing. They supply energy-efficient way and rich dynamics for classification and recognition tasks. In this work, we propose and numerically study the dynamics of complex photonic systems including high-β laser element with delayed feedback and functional current modulation, and employ nonlinear laser dynamics of near-threshold region for the application in reservoir computing. The results indicate a perfect (100%) recognition accuracy for the pattern recognition task and an accuracy about 98% for the Mackey-Glass chaotic sequences prediction. Therefore, the system shows an improvement of performance with low-power consumption. In particular, the error rate is an order of magnitude smaller than previous works. Furthermore, by changing the DC pump, we are able to modify the number of spontaneous emission photons of the system, which then allows us to explore how the laser noise impacts the performance of the reservoir computing system. Through manipulating these variables, we show a deeper understanding on the proposed system, which is helpful for the practical applications of reservoir computing.

Citation


Tao Wang, Can Jiang, Qing Fang, Xingxing Guo, Yahui Zhang, Chaoyuan Jin, and Shuiying Xiang, "Reservoir Computing and Task Performing through Using High-β Lasers with Delayed Optical Feedback," Progress In Electromagnetics Research, Vol. 178, 1-12, 2023.
doi:10.2528/PIER23040401
http://test.jpier.org/PIER/pier.php?paper=23040401

References


    1. Qian, C., B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, "Deep-learning-enabled self-adaptive microwave cloak without human intervention," Nat. Photonics, Vol. 14, 383-390, 2020.
    doi:10.1038/s41566-020-0604-2

    2. Jia, Y., C. Qian, Z. Fan, T. Cai, E. Li, and H. Chen, "A knowledge-inherited learning for intelligent metasurface design and assembly," Light: Science & Applications, Vol. 12, 82, 2023.
    doi:10.1038/s41377-023-01131-4

    3. Zhang, J., C. Qian, J. Chen, B. Wu, and H. Chen, "Uncertainty qualification for metasurface design with amendatory Bayesian network," Laser & Photonics Reviews, 2200807, 2023.
    doi:10.1002/lpor.202200807

    4. Maass, W., T. Natschlager, and H. Markram, "Real-time computing without stable states: A new framework for neural computation based on perturbations," Neural Comput., Vol. 14, No. 11, 2531-2560, 2002.
    doi:10.1162/089976602760407955

    5. Jaeger, H. and H. Haas, "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication," Science, Vol. 304, No. 5667, 78-80, 2004.
    doi:10.1126/science.1091277

    6. Der Sande, G. V., D. Brunner, and M. C. Soriano, "Advances in photonic reservoir computing," Nanophotonics, Vol. 6, No. 3, 561-576, 2017.
    doi:10.1515/nanoph-2016-0132

    7. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "Four-channels reservoir computing based on polarization dynamics in mutually coupled VCSELs system," Opt. Express, Vol. 27, No. 16, 23293-23306, 2019.
    doi:10.1364/OE.27.023293

    8. Vandoorne, K., J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, "Parallel reservoir computing using optical amplifiers," IEEE Transactions on Neural Networks, Vol. 22, No. 9, 1469-1481, 2011.
    doi:10.1109/TNN.2011.2161771

    9. Takano, K., C. Sugano, M. Inubushi, K. Yoshimura, S. Sunada, K. Kanno, and A. Uchida, "Compact reservoir computing with a photonic integrated circuit," Opt. Express, Vol. 26, No. 22, 29424-29439, 2018.
    doi:10.1364/OE.26.029424

    10. Vatin, J., D. Rontani, and M. Sciamanna, "Enhanced performance of a reservoir computer using polarization dynamics in VCSELs," Opt. Lett., Vol. 43, No. 18, 4497-4500, 2018.
    doi:10.1364/OL.43.004497

    11. Appeltant, L., M. C. Soriano, G. van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, "Information processing using a single dynamical node as complex system," Nature Commun., Vol. 2, 468, 2011.
    doi:10.1038/ncomms1476

    12. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, 1364, 2013.
    doi:10.1038/ncomms2368

    13. Ortin, S. and L. Pesquera, "Reservoir computing with an ensemble of time-delay reservoirs," Cogn. Comput., Vol. 9, No. 3, 327-336, 2017.
    doi:10.1007/s12559-017-9463-7

    14. Goldmann, M., F. Koster, K. Ludge, and S. Yanchuk, "Deep time-delay reservoir computing: Dynamics and memory capacity," Chaos, Vol. 30, 093124, 2020.
    doi:10.1063/5.0017974

    15. Stelzer, F., A. Rohm, K. Ludge, and S. Yanchuk, "Performance boost of time-delay reservoir computing by non-resonant clock cycle," Neural Networks, Vol. 124, 158-169, 2020.
    doi:10.1016/j.neunet.2020.01.010

    16. Vatin, J., D. Rontani, and M. Sciamanna, "Experimental reservoir computing using VCSEL polarization dynamics," Opt. Express, Vol. 27, 18579-18584, 2019.
    doi:10.1364/OE.27.018579

    17. Soriano, M. C., S. Ortin, L. Keuninckx, L. Appeltant, J. Danckaert, L. Pesquera, and G. van der Sande, "Delay-based reservoir computing: Noise effects in a combined analog and digital implementation," IEEE Trans. Neural Netw. Learn. Syst., Vol. 26, No. 2, 388-393, 2015.
    doi:10.1109/TNNLS.2014.2311855

    18. Larger, L., M. C. Soriano, D. Brunner, L. Appeltant, J. M. Gutierrez, L. Pesquera, C. R. Mirasso, and I. Fischer, "Photonic information processing beyond turing: An optoelectronic implementation of reservoir computing," Opt. Express, Vol. 20, No. 3, 3241-3249, 2012.
    doi:10.1364/OE.20.003241

    19. Hulser, T., F. Koster, K. Ludge, and L. Jaurigue, "Deriving task specific performance from the information processing capacity of a reservoir computer," Nanophotonics, Vol. 12, 937-947, 2023.
    doi:10.1515/nanoph-2022-0415

    20. Chen, Y., L. Yi, J. Ke, Z. Yang, Y. Yang, L. Huang, Q. Zhuge, and W. Hu, "Reservoir computing system with double optoelectronic feedback loops," Opt. Express, Vol. 27, No. 20, 27431-27440, 2019.
    doi:10.1364/OE.27.027431

    21. Li, Z., S. S. Li, X. Zou, W. Pan, and L. Yan, "Processing-speed enhancement in a delay-laser-based reservoir," Photonics, Vol. 9, 240, 2022.
    doi:10.3390/photonics9040240

    22. Chemboa, Y. K., "Machine learning based on reservoir computing with time-delayed optoelectronic and photonic systems," Chaos, Vol. 30, 013111, 2020.
    doi:10.1063/1.5120788

    23. Ashner, M. N., U. Paudel, M. Luengo-Kovac, J. Pilawa, T. Justin Shaw, and G. C. Valley, "Photonic reservoir computer with all-optical reservoir," Proc. SPIE, AI and Optical Data Sciences II, 117030L, 2021.

    24. Skontranis, M., G. Sarantoglou, A. Bogris, and C. Mesaritakis, "Time-delayed reservoir computing based on a dual-waveband quantum-dot spin polarized vertical cavity surface-emitting laser," Optical Materials Express, Vol. 12, 4047-4060, 2022.
    doi:10.1364/OME.451585

    25. Chen, P., R. Liu, K. Aihara, and L. Chen, "Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation," Nature Commun., Vol. 11, 4568, 2020.
    doi:10.1038/s41467-020-18381-0

    26. Xu, Y., M. Zhang, L. Zhang, P. Lu, S. Mihailov, and X. Bao, "Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback," Opt. Lett., Vol. 42, 4107-4110, 2017.
    doi:10.1364/OL.42.004107

    27. Zhang, L., B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, "640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser," Sci. Rep., Vol. 7, 45900, 2017.
    doi:10.1038/srep45900

    28. Estebanez, I., J. Schwind, I. Fischer, and A. Argyris, "Accelerating photonic computing by bandwidth enhancement of a time-delay reservoir," Nanophotonics, Vol. 9, No. 13, 4163-4171, 2020.
    doi:10.1515/nanoph-2020-0184

    29. Wang, T., X. Wang, Z. Deng, J. Sun, G. P. Puccioni, G. Wang, and G. L. Lippi, "Dynamics of a micro-VCSEL operated in the threshold region under low-level optical feedback," IEEE J. Sel. Top. Quantum Electron., Vol. 25, 1700308, 2019.

    30. Wang, T. and G. L. Lippi, "Polarization-resolved cartography of light emission of a vertical-cavity surface-emitting laser with high space and frequency resolution," Appl. Phys. Lett., Vol. 107, 181103, 2015.
    doi:10.1063/1.4935040

    31. Torre, M. S., C. Masoller, P. Mandel, and K. A. Shore, "Enhanced sensitivity to current modulation near dynamic instability in semiconductor lasers with optical feedback and optical injection," J. Opt. Soc. Am. B, Vol. 21, 302-306, 2004.
    doi:10.1364/JOSAB.21.000302

    32. Nazhan, S., Z. Ghassemlooy, K. Busawon, and A. Gholami, "Investigation of polarization switching of VCSEL subject to intensity modulated and optical feedback," Optics & Laser Technology, Vol. 75, 240-245, 2015.
    doi:10.1016/j.optlastec.2015.07.008

    33. Deng, H., G. L. Lippi, J. Mork, J. Wiersig, and S. Reitzenstein, "Physics and applications of high-β micro- and nanolasers," Adv. Optical Mater., Vol. 9, 2100415, 2021.
    doi:10.1002/adom.202100415

    34. Javanshir, A., T. T. Nguyen, M. A. Parvez Mahmud, and A. Z. Kouzani, "Advancements in algorithms and neuromorphic hardware for spiking neural networks," Neural Comput., Vol. 34, No. 6, 1289-1328, 2022.
    doi:10.1162/neco_a_01499

    35. Wang, T., G. P. Puccioni, and G. L. Lippi, "Dynamical buildup of lasing in mesoscale devices," Scientific Reports, Vol. 5, 15858, 2015.
    doi:10.1038/srep15858

    36. Wang, T., C. Jiang, J. Zou, J. Yang, K. Xu, C. Jin, G. Wang, G. P. Puccioni, and G. L. Lippi, "Nanolasers with feedback as low-coherence illumination sources for speckle-free imaging: A numerical analysis of the superthermal emission regime," Nanomaterials, Vol. 11, 3325, 2021.
    doi:10.3390/nano11123325

    37. Brunner, D., L. Larger, and M. C. Soriano, "Nonlinear photonic dynamical systems for unconventional computing," Nonlinear Theory and Its Applications, IEICE, Vol. 13, 26-35, 2022.
    doi:10.1587/nolta.13.26

    38. Puccioni, G. P. and G. L. Lippi, "Stochastic Simulator for modeling the transition to lasing," Opt. Express, Vol. 23, No. 3, 2369-2374, 2015.
    doi:10.1364/OE.23.002369

    39. Lippi, G. L., T. Wang, and G. P. Puccioni, "`Phase transitions' in small systems: Why standard threshold definitions fail for nanolasers," Chaos, Solitons and Fractals, Vol. 157, 111850, 2022.
    doi:10.1016/j.chaos.2022.111850

    40. Rice, P. R. and H. J. Carmichael, "Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy," Phys. Rev. A, Vol. 50, 4318, 1994.
    doi:10.1103/PhysRevA.50.4318

    41. Guo, X. X., S. Y. Xiang, Y. H. Zhang, L. Lin, A. J. Wen, and Y. Hao, "High-speed neuromorphic reservoir computing based on a semiconductor nanolaser with optical feedback under electrical modulation," IEEE J. Sel. Top. Quantum Electron., Vol. 26, 1500707, 2020.

    42. Brunner, D., M. C. Soriano, C. R. Mirasso, and I. Fischer, "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Commun., Vol. 4, 1364, 2013.
    doi:10.1038/ncomms2368

    43. Yue, D., Z. Wu, Y. Hou, B. Cui, Y. Jin, M. Dai, and G. Xia, "Performance optimization research of reservoir computing system based on an optical feedback semiconductor laser under electrical information injection," Opt. Exp., Vol. 27, No. 14, 19931-19939, 2019.
    doi:10.1364/OE.27.019931

    44. Yue, D., Y. Hou, Z. Wu, C. Hu, Z. Xiao, and G. Xia, "Experimental investigation of an optical reservoir computing system based on two parallel time-delay reservoirs," IEEE Photonics Journal, Vol. 13, No. 3, 8500111, 2021.
    doi:10.1109/JPHOT.2021.3075055

    45. Koster, F., S. Yanchuk, and K. Ludge, "Insight into delay based reservoir computing via eigenvalue analysis," J. Phys. Photonics, Vol. 3, 024011, 2021.
    doi:10.1088/2515-7647/abf237

    46. Hulser, T., F. Koster, L. Jaurigue, and K. Ludge, "Role of delay-times in delay-based photonic reservoir computing," Opt. Mater. Express, Vol. 12, 1214-1231, 2022.
    doi:10.1364/OME.451016

    47. Sugano, C., K. Kanno, and A. Uchida, "Reservoir computing using multiple lasers with feedback on a photonic integrated circuit," IEEE J. Sel. Topics Quantum Electron., Vol. 26, No. 1, 1-9, 2020.
    doi:10.1109/JSTQE.2019.2929179

    48. Taylor, J., "Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements," University Science Books, 349 (cit. on p. 84), 1997.