Vol. 178

Latest Volume
All Volumes
All Issues
2023-09-25

Polarization-Wavelength Locked Plasmonic Topological States

By Yuan-Zhen Li, Zijian Zhang, Hongsheng Chen, and Fei Gao
Progress In Electromagnetics Research, Vol. 178, 37-47, 2023
doi:10.2528/PIER23081008

Abstract

Plasmonic topological states, providing a new way to bypass the diffraction limits and against fabrication disorders, have attracted intense attention. In addition to the near-field coupling and band topology, the localized surface plasmonic resonance modes can be manipulated with far-field degrees of freedom (DoFs), such as polarization. However, changing the frequency of the topological edge states with different polarized incident waves remains a challenge, which has led to significant interest in multiplexed radiative topological devices. Here, we report the realization of polarization-wavelength locked plasmonic topological edge states on the Su-Schrieffer-Heeger (SSH) model. We theoretically and numerically show that such phenomenon is based on two mechanisms, i.e., the splitting in the spectra of plasmonic topological edge states with different intrinsic parity DoF and projecting the far-field polarizations to the parity of lattice modes. These results promise applications in robust optical emitters and multiplexed photonic devices.

Citation


Yuan-Zhen Li, Zijian Zhang, Hongsheng Chen, and Fei Gao, "Polarization-Wavelength Locked Plasmonic Topological States," Progress In Electromagnetics Research, Vol. 178, 37-47, 2023.
doi:10.2528/PIER23081008
http://test.jpier.org/PIER/pier.php?paper=23081008

References


    1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, U.S., 2007.
    doi:10.1007/0-387-37825-1

    2. Giannini, V., A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamental and their use in controlling the radiative properties of nanoemmitters," Chem. Rev., Vol. 111, 3888-3912, 2011.
    doi:10.1021/cr1002672

    3. Lu, L., J. D. Joannopoulos, and M. Spljacic, "Topological photonics," Nature Photonics, Vol. 8, 821-829, 2014.
    doi:10.1038/nphoton.2014.248

    4. Ozawa, T., et al., "Topological photonics," Rev. Mod. Phys., Vol. 91, 015006, 2019.
    doi:10.1103/RevModPhys.91.015006

    5. Shastri, K., M. I. Abdelrahman, and F. Monticone, "Nonreciprocal and topological plasmonics," Photonics, Vol. 8, 133, 2021.
    doi:10.3390/photonics8040133

    6. Zhuang, W., X. Chen, and F. Ye, "Plasmonic topological insulators for topological nanophotonics," Optics Letters, Vol. 42, No. 20, 4063-4066, 2017.
    doi:10.1364/OL.42.004063

    7. Leykam, D. and L. Yuan, "Topological phases in ring resonators: Recent progress and future prospects," Nanophotonics, Vol. 9, No. 15, 4473-4487, 2020.
    doi:10.1515/nanoph-2020-0415

    8. Su, W. P., J. R. Schrieffer, and A. J. Heeger, "Solitons in Polyacetylene,", Vol. 45, No. 25, 1979.

    9. Malkova, N., I. Hromada, X. Wang, G. Bryant, and Z. Chen, "Observation of optical Shockley-like surface states in photonic superlattices," Optics Letters, Vol. 34, No. 11, 1633-1635, 2009.
    doi:10.1364/OL.34.001633

    10. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional system," Physical Review X, Vol. 4, 021017, 2014.
    doi:10.1103/PhysRevX.4.021017

    11. Miert, G. V. and C. Ortix, "Excess charges as a probe of one-dimensional topological crystalline insulating phases," Physical Review B, Vol. 96, 235130, 2017.
    doi:10.1103/PhysRevB.96.235130

    12. Chen, T., Y. Yu, Y. Song, D. Yu, H. Ye, J. Xie, X. Shen, Y. Pan, and Q. Cheng, "Distinguishing the topological zero mode and Tamm mode in a microwave waveguide array," Ann. Phys. (Berlin), Vol. 531, 1900347, 2019.
    doi:10.1002/andp.201900347

    13. Li, G., L. Wang, R. Ye, Y. Zheng, D.-W. Wang, X.-J. Liu, A. Dutt, L. Yuan, and X. Chen, "Direct extraction of topological Zak phase with the synthetic dimension," Light: Science & Applications, Vol. 12, No. 1, 81, 2023.
    doi:10.1038/s41377-023-01126-1

    14. Pocock, S. R., X. Xiao, P. A. Huidobro, and V. Giannini, "Topological plasmonic chain with retardation and radiative effects," ACS Photonics, Vol. 5, 2271-2279, 2018.
    doi:10.1021/acsphotonics.8b00117

    15. Compaijen, P. J., V. A. Malyshev, and J. Knoester, "Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions," Physical Review B, Vol. 9, 085428, 2018.
    doi:10.1103/PhysRevB.97.085428

    16. Wu, R. P. H. and H. C. Ong, "Small mode volume topological photonic states in one-dimensional lattices with dipole-quadrupole interactions," Physical Review Research, Vol. 4, 023233, 2022.
    doi:10.1103/PhysRevResearch.4.023233

    17. Zhang, M.-X., Z. Zhou, L. Yan, L. Zhang, and J.-Y. Yan, "Polarization-induced topological phase transition in zigzag chains composed of metal nanoparticles," J. Appl. Phys., Vol. 129, 243103, 2021.
    doi:10.1063/5.0054141

    18. Moritake, Y., M. Ono, and M. Notomi, "Far-field optical imaging of topological edge states in zigzag plasmonic chains," Nanophotonics, Vol. 11, No. 9, 2183-2189, 2022.
    doi:10.1515/nanoph-2021-0648

    19. Zheng, J., Z. Guo, Y. Sun, H. Jiang, Y. Li, and H. Chen, "Topological edge modes in one-dimensional photonic artificial structures," Progress In Electromagnetics Research, Vol. 178, 1-20, 2023.
    doi:10.2528/PIER22101202

    20. Sinev, I. S., I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, "Mapping plasmonic topological states at the nanoscale," Nanoscale, Vol. 7, 11904, 2015.
    doi:10.1039/C5NR00231A

    21. Hu, P., L. Chen, A. P. Shkurinov, Y. Zhu, and S. Zhuang, "Observation of topological transmission in terahertz domino waveguide array," IEEE Transaction of Terahertz Science and Technology, Vol. 13, No. 4, 337-346, 2023.
    doi:10.1109/TTHZ.2023.3275270

    22. Poddubny, A., A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, "Topological Majorana states in zigzag chains of plasmonic nanoparticles," ACS Photonics, Vol. 1, 101-105, 2014.
    doi:10.1021/ph4000949

    23. Downing, C. A. and G. Weick, "Topological collective plasmons in bipartite chains of metallic nanoparticles," Physical Review B, Vol. 95, 125426, 2017.
    doi:10.1103/PhysRevB.95.125426

    24. Bleckmann, F., Z. Cherpakova, S. Linden, and A. Alberti, "Spectral imaging of topological edge states in plasmonic waveguide arrays," Physical Review B, Vol. 96, 045417, 2017.
    doi:10.1103/PhysRevB.96.045417

    25. Ling, C. W., M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, "Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles," Optics Ecpress, Vol. 23, No. 3, 2021-2031, 2015.
    doi:10.1364/OE.23.002021

    26. Giannini, V., G. Vecchi, and J. G. Rivas, "Lighting up multipolar surface plasmon polaritons by collective resonances in array of nanoantennas," Physical Review Letters, Vol. 105, 266801, 2010.
    doi:10.1103/PhysRevLett.105.266801

    27. Solnyshkov, D. D., A. V. Nalitov, and G. Malpuech, "Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars," Physical Review Letters, Vol. 116, 046402, 2016.
    doi:10.1103/PhysRevLett.116.046402

    28. Chen, Z.-Y., L.-S. Yan, Y. Pan, L. Jiang, A.-L. Yi, W. Pan, and B. Luo, "Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission," Light: Science & Applications, Vol. 6, e16207, 2017.

    29. Zhou, W., M. Dridi, J. Y. Suh, C. H. Kin, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, "Lasing action in strongly coupled plasmonic nanocavity arrays," Nature Nanotechnology, Vol. 8, 506-511, 2013.
    doi:10.1038/nnano.2013.99

    30. Wang, H., et al., "Towards optimal single-photon sources from polarized microcavities," Nature Photonics, Vol. 13, 770-775, 2019.
    doi:10.1038/s41566-019-0494-3

    31. Wellbrock, G. and T. J. Xia, "The road to 100G deployment," IEEE Communications Magazine, Vol. 48, S14, 2010.
    doi:10.1109/MCOM.2010.5434373

    32. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, S97, 2005.
    doi:10.1088/1464-4258/7/2/013

    33. Pros, A., E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, "Localized spoof plasmons arise while texturing closed surfaces," Physical Review Letters, Vol. 108, 223905, 2012.
    doi:10.1103/PhysRevLett.108.223905

    34. Shen, X. and T. Cui, "Ultrathin plasmonic metamaterial for spoof localized surface plasmons," Laser Photonics Rev., Vol. 8, No. 1, 127-145, 2014.
    doi:10.1002/lpor.201300144

    35. Gao, Z., F. Gao, Y. Zhang, H. Xu, Y. Luo, and B. Zhang, "Forward/backward switching of plasmonic wave propagation using sign-reversal coupling," Adv. Mater., Vol. 29, 1700018, 2017.
    doi:10.1002/adma.201700018

    36. Gao, Z., L. Wu, F. Gao, Y. Luo, and B. Zhang, "Spoof plasmonics: From metamaterial concept to topological description," Adv. Mater., Vol. 30, 1706683, 2018.
    doi:10.1002/adma.201706683

    37. Yan, Q., E. Cao, Q. Sun, Y. Ao, X. Hu, X. Shi, Q. Gong, and H. Misawa, "Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains," Nano Lett., Vol. 21, 9270-9278, 2021.
    doi:10.1021/acs.nanolett.1c03324

    38. Garcia-Vidal, F. J., A. I. Femandez-Dominguez, L. Martin-Moreno, H. C. Zhang, W. Tang, R. Peng, and T. J. Cui, "Spoof surface plasmon photonics," Rev. Mod. Phys., Vol. 94, 025004, 2022.
    doi:10.1103/RevModPhys.94.025004

    39. Yang, Y., et al., "Radiative anti-parity-time plasmonics," Nature Communications, Vol. 13, 7678, 2022.
    doi:10.1038/s41467-022-35447-3

    40. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Optics Letters, Vol. 24, No. 11, 711-713, 1999.
    doi:10.1364/OL.24.000711

    41. Li, Y., et al., "Polarization-orthogonal nondegenerate plasmonic higher-order topological states," Physical Review Letters, Vol. 130, 213603, 2023.
    doi:10.1103/PhysRevLett.130.213603

    42. Perez-Gonzalez, B., M. Bello, A. Gomez-Leon, and G. Platero, "Interplay between long-range hopping and disorder in topological systems," Physical Review B, 035146, 2019.
    doi:10.1103/PhysRevB.99.035146

    43. Li, C. and A. E. Miroshnichenko, "Extended SSH model: Non-local couplings and non-monotonous edge states," Physics, Vol. 1, 2-16, 2019.

    44. Chen, L., N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, "Defect-induced Fano resonances in corrugated plasmonic metamaterials," Adv. Optical Mater., Vol. 5, 1600960, 2017.
    doi:10.1002/adom.201600960

    45. Gu, X., G.-D. Liu, L.-L. Wang, and Q. Lin, "Robus Fano resonance induced by topologically protected interface modes interference at gigahertz," Appl. Phys. Express, Vol. 15, 082004, 2022.
    doi:10.35848/1882-0786/ac8334

    46. Yang, Y. and Y. Pan, "Engineering zero mode, Fano resonance, and Tamm surface states in the waveguide-array realization of the modifiedd Su-Schrieffer-Heeger model," Optics Express, Vol. 27, No. 23, 32900-32911, 2019.
    doi:10.1364/OE.27.032900

    47. Song, F., S. Yao, and Z. Wang, "Non-Hermitian topological invariants in real space," Physical Review Letters, Vol. 123, 246801, 2019.
    doi:10.1103/PhysRevLett.123.246801

    48. Wu, X., L. Wang, S. Chen, X. Chen, and L. Yuan, "Transition characteristics of Non-Hermitian Skin Effects in a Zigzag lattice without chiral symmetry," Adv. Physics Res., 2300007, 2023.
    doi:10.1002/apxr.202300007

    49. Zhou, W.-H. and C.-X. Zhang, "Nonreciprocal Su-Schrieffer-Heeger lattice in the presence of next-nearest-neighboring coupling," Phys. Scr., Vol. 98, No. 5, 055202, 2023.
    doi:10.1088/1402-4896/acc4f1