Vol. 178

Latest Volume
All Volumes
All Issues

Polarization-Wavelength Locked Plasmonic Topological States

By Yuan-Zhen Li, Zijian Zhang, Hongsheng Chen, and Fei Gao
Progress In Electromagnetics Research, Vol. 178, 37-47, 2023


Plasmonic topological states, providing a new way to bypass the diffraction limits and against fabrication disorders, have attracted intense attention. In addition to the near-field coupling and band topology, the localized surface plasmonic resonance modes can be manipulated with far-field degrees of freedom (DoFs), such as polarization. However, changing the frequency of the topological edge states with different polarized incident waves remains a challenge, which has led to significant interest in multiplexed radiative topological devices. Here, we report the realization of polarization-wavelength locked plasmonic topological edge states on the Su-Schrieffer-Heeger (SSH) model. We theoretically and numerically show that such phenomenon is based on two mechanisms, i.e., the splitting in the spectra of plasmonic topological edge states with different intrinsic parity DoF and projecting the far-field polarizations to the parity of lattice modes. These results promise applications in robust optical emitters and multiplexed photonic devices.


Yuan-Zhen Li, Zijian Zhang, Hongsheng Chen, and Fei Gao, "Polarization-Wavelength Locked Plasmonic Topological States," Progress In Electromagnetics Research, Vol. 178, 37-47, 2023.


    1. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, U.S., 2007.

    2. Giannini, V., A. I. Fernandez-Dominguez, S. C. Heck, and S. A. Maier, "Plasmonic nanoantennas: Fundamental and their use in controlling the radiative properties of nanoemmitters," Chem. Rev., Vol. 111, 3888-3912, 2011.

    3. Lu, L., J. D. Joannopoulos, and M. Spljacic, "Topological photonics," Nature Photonics, Vol. 8, 821-829, 2014.

    4. Ozawa, T., et al., "Topological photonics," Rev. Mod. Phys., Vol. 91, 015006, 2019.

    5. Shastri, K., M. I. Abdelrahman, and F. Monticone, "Nonreciprocal and topological plasmonics," Photonics, Vol. 8, 133, 2021.

    6. Zhuang, W., X. Chen, and F. Ye, "Plasmonic topological insulators for topological nanophotonics," Optics Letters, Vol. 42, No. 20, 4063-4066, 2017.

    7. Leykam, D. and L. Yuan, "Topological phases in ring resonators: Recent progress and future prospects," Nanophotonics, Vol. 9, No. 15, 4473-4487, 2020.

    8. Su, W. P., J. R. Schrieffer, and A. J. Heeger, "Solitons in Polyacetylene,", Vol. 45, No. 25, 1979.

    9. Malkova, N., I. Hromada, X. Wang, G. Bryant, and Z. Chen, "Observation of optical Shockley-like surface states in photonic superlattices," Optics Letters, Vol. 34, No. 11, 1633-1635, 2009.

    10. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional system," Physical Review X, Vol. 4, 021017, 2014.

    11. Miert, G. V. and C. Ortix, "Excess charges as a probe of one-dimensional topological crystalline insulating phases," Physical Review B, Vol. 96, 235130, 2017.

    12. Chen, T., Y. Yu, Y. Song, D. Yu, H. Ye, J. Xie, X. Shen, Y. Pan, and Q. Cheng, "Distinguishing the topological zero mode and Tamm mode in a microwave waveguide array," Ann. Phys. (Berlin), Vol. 531, 1900347, 2019.

    13. Li, G., L. Wang, R. Ye, Y. Zheng, D.-W. Wang, X.-J. Liu, A. Dutt, L. Yuan, and X. Chen, "Direct extraction of topological Zak phase with the synthetic dimension," Light: Science & Applications, Vol. 12, No. 1, 81, 2023.

    14. Pocock, S. R., X. Xiao, P. A. Huidobro, and V. Giannini, "Topological plasmonic chain with retardation and radiative effects," ACS Photonics, Vol. 5, 2271-2279, 2018.

    15. Compaijen, P. J., V. A. Malyshev, and J. Knoester, "Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions," Physical Review B, Vol. 9, 085428, 2018.

    16. Wu, R. P. H. and H. C. Ong, "Small mode volume topological photonic states in one-dimensional lattices with dipole-quadrupole interactions," Physical Review Research, Vol. 4, 023233, 2022.

    17. Zhang, M.-X., Z. Zhou, L. Yan, L. Zhang, and J.-Y. Yan, "Polarization-induced topological phase transition in zigzag chains composed of metal nanoparticles," J. Appl. Phys., Vol. 129, 243103, 2021.

    18. Moritake, Y., M. Ono, and M. Notomi, "Far-field optical imaging of topological edge states in zigzag plasmonic chains," Nanophotonics, Vol. 11, No. 9, 2183-2189, 2022.

    19. Zheng, J., Z. Guo, Y. Sun, H. Jiang, Y. Li, and H. Chen, "Topological edge modes in one-dimensional photonic artificial structures," Progress In Electromagnetics Research, Vol. 178, 1-20, 2023.

    20. Sinev, I. S., I. S. Mukhin, A. P. Slobozhanyuk, A. N. Poddubny, A. E. Miroshnichenko, A. K. Samusev, and Y. S. Kivshar, "Mapping plasmonic topological states at the nanoscale," Nanoscale, Vol. 7, 11904, 2015.

    21. Hu, P., L. Chen, A. P. Shkurinov, Y. Zhu, and S. Zhuang, "Observation of topological transmission in terahertz domino waveguide array," IEEE Transaction of Terahertz Science and Technology, Vol. 13, No. 4, 337-346, 2023.

    22. Poddubny, A., A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, "Topological Majorana states in zigzag chains of plasmonic nanoparticles," ACS Photonics, Vol. 1, 101-105, 2014.

    23. Downing, C. A. and G. Weick, "Topological collective plasmons in bipartite chains of metallic nanoparticles," Physical Review B, Vol. 95, 125426, 2017.

    24. Bleckmann, F., Z. Cherpakova, S. Linden, and A. Alberti, "Spectral imaging of topological edge states in plasmonic waveguide arrays," Physical Review B, Vol. 96, 045417, 2017.

    25. Ling, C. W., M. Xiao, C. T. Chan, S. F. Yu, and K. H. Fung, "Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles," Optics Ecpress, Vol. 23, No. 3, 2021-2031, 2015.

    26. Giannini, V., G. Vecchi, and J. G. Rivas, "Lighting up multipolar surface plasmon polaritons by collective resonances in array of nanoantennas," Physical Review Letters, Vol. 105, 266801, 2010.

    27. Solnyshkov, D. D., A. V. Nalitov, and G. Malpuech, "Kibble-Zurek mechanism in topologically nontrivial zigzag chains of polariton micropillars," Physical Review Letters, Vol. 116, 046402, 2016.

    28. Chen, Z.-Y., L.-S. Yan, Y. Pan, L. Jiang, A.-L. Yi, W. Pan, and B. Luo, "Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission," Light: Science & Applications, Vol. 6, e16207, 2017.

    29. Zhou, W., M. Dridi, J. Y. Suh, C. H. Kin, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, "Lasing action in strongly coupled plasmonic nanocavity arrays," Nature Nanotechnology, Vol. 8, 506-511, 2013.

    30. Wang, H., et al., "Towards optimal single-photon sources from polarized microcavities," Nature Photonics, Vol. 13, 770-775, 2019.

    31. Wellbrock, G. and T. J. Xia, "The road to 100G deployment," IEEE Communications Magazine, Vol. 48, S14, 2010.

    32. Garcia-Vidal, F. J., L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: New plasmonic metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, S97, 2005.

    33. Pros, A., E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, "Localized spoof plasmons arise while texturing closed surfaces," Physical Review Letters, Vol. 108, 223905, 2012.

    34. Shen, X. and T. Cui, "Ultrathin plasmonic metamaterial for spoof localized surface plasmons," Laser Photonics Rev., Vol. 8, No. 1, 127-145, 2014.

    35. Gao, Z., F. Gao, Y. Zhang, H. Xu, Y. Luo, and B. Zhang, "Forward/backward switching of plasmonic wave propagation using sign-reversal coupling," Adv. Mater., Vol. 29, 1700018, 2017.

    36. Gao, Z., L. Wu, F. Gao, Y. Luo, and B. Zhang, "Spoof plasmonics: From metamaterial concept to topological description," Adv. Mater., Vol. 30, 1706683, 2018.

    37. Yan, Q., E. Cao, Q. Sun, Y. Ao, X. Hu, X. Shi, Q. Gong, and H. Misawa, "Near-field imaging and time-domain dynamics of photonic topological edge states in plasmonic nanochains," Nano Lett., Vol. 21, 9270-9278, 2021.

    38. Garcia-Vidal, F. J., A. I. Femandez-Dominguez, L. Martin-Moreno, H. C. Zhang, W. Tang, R. Peng, and T. J. Cui, "Spoof surface plasmon photonics," Rev. Mod. Phys., Vol. 94, 025004, 2022.

    39. Yang, Y., et al., "Radiative anti-parity-time plasmonics," Nature Communications, Vol. 13, 7678, 2022.

    40. Yariv, A., Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: A proposal and analysis," Optics Letters, Vol. 24, No. 11, 711-713, 1999.

    41. Li, Y., et al., "Polarization-orthogonal nondegenerate plasmonic higher-order topological states," Physical Review Letters, Vol. 130, 213603, 2023.

    42. Perez-Gonzalez, B., M. Bello, A. Gomez-Leon, and G. Platero, "Interplay between long-range hopping and disorder in topological systems," Physical Review B, 035146, 2019.

    43. Li, C. and A. E. Miroshnichenko, "Extended SSH model: Non-local couplings and non-monotonous edge states," Physics, Vol. 1, 2-16, 2019.

    44. Chen, L., N. Xu, L. Singh, T. Cui, R. Singh, Y. Zhu, and W. Zhang, "Defect-induced Fano resonances in corrugated plasmonic metamaterials," Adv. Optical Mater., Vol. 5, 1600960, 2017.

    45. Gu, X., G.-D. Liu, L.-L. Wang, and Q. Lin, "Robus Fano resonance induced by topologically protected interface modes interference at gigahertz," Appl. Phys. Express, Vol. 15, 082004, 2022.

    46. Yang, Y. and Y. Pan, "Engineering zero mode, Fano resonance, and Tamm surface states in the waveguide-array realization of the modifiedd Su-Schrieffer-Heeger model," Optics Express, Vol. 27, No. 23, 32900-32911, 2019.

    47. Song, F., S. Yao, and Z. Wang, "Non-Hermitian topological invariants in real space," Physical Review Letters, Vol. 123, 246801, 2019.

    48. Wu, X., L. Wang, S. Chen, X. Chen, and L. Yuan, "Transition characteristics of Non-Hermitian Skin Effects in a Zigzag lattice without chiral symmetry," Adv. Physics Res., 2300007, 2023.

    49. Zhou, W.-H. and C.-X. Zhang, "Nonreciprocal Su-Schrieffer-Heeger lattice in the presence of next-nearest-neighboring coupling," Phys. Scr., Vol. 98, No. 5, 055202, 2023.