Vol. 178

Latest Volume
All Volumes
All Issues
2023-10-01

High-Accuracy Rapid Identification and Classification of Mixed Bacteria Using Hyperspectral Transmission Microscopic Imaging and Machine Learning

By He Zhu, Jing Luo, Jiaqi Liao, and Sailing He
Progress In Electromagnetics Research, Vol. 178, 49-62, 2023
doi:10.2528/PIER23082303

Abstract

In this paper, we developed a hyperspectral transmission microscopic imaging (HTMI) system for rapid detection of pathogenic bacteria, which can realize precise identification and classification of mixed pathogenic bacteria to a single-bacterium level. The system worksin trans-illumination patterns and a self-developed dispersive hyperspectral imaging module is usedas the detection setup, providing spectral images with high SNR, and showing excellent performances with spatial resolution of 2.19 µm and spectral resolutions less than 1 nm. Hyperspectral microscopic imaging of five types of bacteria in low concentration were performed. The merging spatial-spectral profiles of individual bacteria for each species were extracted and utilized for species identification, achieving high classification accuracy of 93.6% using a simple PCA-SVM method. Species identification experiments of the mixed bacterial sampleswere further carried out, and the results demonstrate the validity and capability of the system assisted with simple machine learning methods to be used as an effective and rapid diagnostic tool for elaborate identification of mixed bacterial pathogen samples, providing guidance for the use of correct antibiotics.

Citation


He Zhu, Jing Luo, Jiaqi Liao, and Sailing He, "High-Accuracy Rapid Identification and Classification of Mixed Bacteria Using Hyperspectral Transmission Microscopic Imaging and Machine Learning," Progress In Electromagnetics Research, Vol. 178, 49-62, 2023.
doi:10.2528/PIER23082303
http://test.jpier.org/PIER/pier.php?paper=23082303

References


    1. Ward, J. L., et al., "Global, regional, and national mortality among young people aged 10{24 years, 1950{2019: A systematic analysis for the Global Burden of Disease Study 2019," Lancet, Vol. 398, 1593-1618, 2021.
    doi:10.1016/S0140-6736(21)01546-4

    2. Beutlich, J., et al., "Characterization of illegal food items and identification of foodborne pathogens brought into the European Union via two major German airports," International Journal of Food Microbiology, Vol. 209, 13-19, 2015.
    doi:10.1016/j.ijfoodmicro.2014.10.017

    3. Galanis, E., et al., "Integrated surveillance of Salmonella along the food chain using existing data and resources in British Columbia, Canada," Food Research International, Vol. 45, No. 2, 795-801, 2012.
    doi:10.1016/j.foodres.2011.04.015

    4. Kumar, A., et al., "Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock," Chest, Vol. 136, No. 5, 1237-1248, 2009.
    doi:10.1378/chest.09-0087

    5. Gan, Y., et al., "Fight bacteria with bacteria: Bacterial membrane vesicles as vaccines and delivery nanocarriers against bacterial infections," Nanomedicine-Nanotechnology Biology and Medicine, Vol. 35, 102398, 2021.
    doi:10.1016/j.nano.2021.102398

    6. Fratamico, P. M., "Comparison of culture, polymerase chain reaction (PCR), TaqMan Salmonella, and Transia Card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef," Molecular and Cellular Probes, Vol. 17, No. 5, 215-221, 2003.
    doi:10.1016/S0890-8508(03)00056-2

    7. Bolton, F. J., et al., "Rapid enzyme-linked immunoassay for detection of salmonella in food and feed products: Performance testing program," Journal of Aoac International, Vol. 83, No. 2, 299-303, 2000.
    doi:10.1093/jaoac/83.2.299

    8. Compton, J., "Nucleic acid sequence-based amplification," Nature, Vol. 350, No. 6313, 91-92, 1991.
    doi:10.1038/350091a0

    9. Engelmann, I., et al., "Preanalytical issues and cycle threshold values in SARS-CoV-2 real-time RT-PCR testing: Should test results include these," Acs Omega, Vol. 6, No. 10, 6528-6536, 2021.
    doi:10.1021/acsomega.1c00166

    10. Pal, S., et al., "Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices," Biosystems Engineering, Vol. 99, No. 4, 461-468, 2008.
    doi:10.1016/j.biosystemseng.2007.11.015

    11. Esteban-Fernandez De Avila, B., et al., "Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus," Analytical and Bioanalytical Chemistry, Vol. 403, No. 4, 917-925, 2012.
    doi:10.1007/s00216-012-5738-8

    12. Munoz-Berbel, X., et al., "Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage," Biosensors & Bioelectronics, Vol. 23, No. 10, 1540-1546, 2008.
    doi:10.1016/j.bios.2008.01.007

    13. Luo, J., Z. Lin, X. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fastspectral and surface morphology measurements (Invited Paper)," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
    doi:10.2528/PIER22021702

    14. Guo, T., Z. Lin, X. Xu, Z. Zhang, X. Chen, N. He, G. Wang, Y. Jin, J. Evans, and S. He, "Broad-tuning, dichroic metagrating Fabry-Perot filter based on liquid crystal for spectral imaging," Progress In Electromagnetics Research, Vol. 177, 43-51, 2023.
    doi:10.2528/PIER23030703

    15. Pawlowski, M. E., et al., "High performance image mapping spectrometer (IMS) for snapshot hyperspectral imaging applications," Optics Express, Vol. 27, No. 2, 1597-1612, 2019.
    doi:10.1364/OE.27.001597

    16. Wang, T., et al., "Smartphone imaging spectrometer for egg/meat freshness monitoring," Analytical Methods, Vol. 14, No. 5, 508-517, 2022.
    doi:10.1039/D1AY01726H

    17. Shen, F., et al., "Open-source mobile multispectral imaging system and its applications in biological sample sensing," Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, Vol. 280, 121504, 2022.
    doi:10.1016/j.saa.2022.121504

    18. Li, Y., F. Shen, and L. Hu, "A stare-down video-rate high-throughput hyperspectral imaging system and its applications in biological sample sensing," IEEE Sensors Journal, 2023.

    19. Xu, Z., et al., "Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning," Optics Express, Vol. 28, No. 21, 30686-30700, 2020.
    doi:10.1364/OE.406036

    20. Lin, S., et al., "Dual-type hyperspectral microscopic imaging for the identification and analysis of intestinal fungi," Biomedical Optics Express, Vol. 9, No. 9, 4496-4508, 2018.
    doi:10.1364/BOE.9.004496

    21. Luo, J., et al., "Confocal hyperspectral microscopic imager for the detection and classification of individual microalgae," Optics Express, Vol. 29, No. 23, 37281-37301, 2021.
    doi:10.1364/OE.438253

    22. Maktabi, M., et al., "Tumor cell identification and classification in esophageal adenocarcinoma specimens by hyperspectral imaging," Scientific Reports, Vol. 12, No. 1, 4508, 2022.
    doi:10.1038/s41598-022-07524-6

    23. Zhu, S., et al., "Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images," Biomedical Optics Express, Vol. 6, No. 4, 1135-1145, 2015.
    doi:10.1364/BOE.6.001135

    24. Duan, Y., et al., "Leukocyte classification based on spatial and spectral features of microscopic hyperspectral images," Optics & Laser Technology, Vol. 112, 530-538, 2019.
    doi:10.1016/j.optlastec.2018.11.057

    25. Wang, Q., et al., "Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology," Biomedical Optics Express, Vol. 8, 3017-3028, 2017.
    doi:10.1364/BOE.8.003017

    26. Seo, Y., et al., "Identification of Staphylococcus species with hyperspectral microscope imaging and classification algorithms," Journal of Food Measurement and Characterization, Vol. 10, No. 2, 253-263, 2016.
    doi:10.1007/s11694-015-9301-0

    27. Seo, Y., et al., "Morphological image analysis for foodborne bacteria classification," Transactions of the Asabe, Vol. 61, No. 1, 5-13, 2018.
    doi:10.13031/trans.11800

    28. Liu, K., et al., "Classification of two species of Gram-positive bacteria through hyperspectral microscopy coupled with machine learning," Biomedical Optics Express, Vol. 12, No. 12, 7906-7916, 2021.
    doi:10.1364/BOE.445041

    29. Tao, C., et al., "A deep-learning based system for rapid genus identification of pathogens under hyperspectral microscopic images," Cells, Vol. 11, No. 14, 2237, 2022.
    doi:10.3390/cells11142237

    30. Tao, C., et al., "Rapid identification of infectious pathogens at the single-cell level via combining hyperspectral microscopic images and deep learning," Cells, Vol. 12, No. 3, 379, 2023.
    doi:10.3390/cells12030379

    31. Kang, R., et al., "Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks," Applied Microbiology and Biotechnology, Vol. 104, No. 7, 3157-3166, 2020.
    doi:10.1007/s00253-020-10387-4

    32. Kang, R., et al., "Single-cell classification of foodborne pathogens using hyperspectral microscope imaging coupled with deep learning frameworks," Sensors and Actuators B --- Chemical, Vol. 309, 127789, 2020.
    doi:10.1016/j.snb.2020.127789

    33. Huang, G., et al., "Densely connected convolutional networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708, Honolulu, HI, USA, July 21-26, 2017.

    34. Farooq, S., et al., "Rapid identification of breast cancer subtypes using micro-FTIR and machine learning methods," Applied Optics, Vol. 62, No. 8, C80-C87, 2023.
    doi:10.1364/AO.477409

    35. Farooq, S., A. Caramel-Juvino, and M. Del-Valle, "Superior machine learning method for breast cancer cell lines identification," 2022 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 1-3, 2022.

    36. Cho, J. H., P. J. Gemperline, and D. Walker, "Wavelength calibration method for a CCD detector and multichannel fiber-optic probes," Appl. Spectrosc., Vol. 49, No. 12, 1841-1845, 1995.
    doi:10.1366/0003702953966055

    37. Wold, S., K. Esbensen, and P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst., Vol. 2, No. 1-3, 37-52, 1987.
    doi:10.1016/0169-7439(87)80084-9

    38. Bro, R. and A. K. Smilde, "Principal component analysis," Analytical Methods, Vol. 6, No. 9, 2812-2831, 2014.
    doi:10.1039/C3AY41907J

    39. Melgani, F. and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, 1778-1790, 2004.
    doi:10.1109/TGRS.2004.831865

    40. Moughal, T. A., "Hyperspectral image classification using support vector machine," Journal of Physics Conference, Vol. 439, 012042, 2013.
    doi:10.1088/1742-6596/439/1/012042

    41. Yang, W. and H. Song, "Spectral-spatial classification of hyperspectral image based on support vector machine," International Journal of Information Technology and Web Engineering, Vol. 16, No. 1, 56-74, 2021.
    doi:10.4018/IJITWE.2021010103

    42. De Oliveira, M. A. S., et al., "Hyperspectral Raman microscopy can accurately differentiate single cells of different human thyroid nodules," Biomedical Optics Express, Vol. 10, No. 9, 4411-4421, 2019.
    doi:10.1364/BOE.10.004411

    43. Luo, J., et al., "Pulse fluorescence LIDAR system for identification and low concentration measurements of Phaeocystisglobosa cells and colonies," Optik, Vol. 270, 170003, 2022.
    doi:10.1016/j.ijleo.2022.170003