Vol. 1

Latest Volume
All Volumes
All Issues
2007-11-09

Probing the Feed Line Parameters in Vivaldi Notch Antennas

By Javad Shafieha, Javad Nourinia, and Changiz Ghobadi
Progress In Electromagnetics Research B, Vol. 1, 237-252, 2008
doi:10.2528/PIERB07102702

Abstract

Some new parameters in Vivaldi Notch antennas are debated over in this paper. They can be availed for the bandwidth application amelioration. The aforementioned limiting factors comprise two parameters for the radial stub dislocation, one parameter for the stub opening angle, and one parameter for the stub's offset angle. The aforementioned parameters are rectified by means of the optimization algorithm to accomplish a better frequency application. The results obtained in this article will eventually be collated with those of the other similar antennas. The best achieved bandwidth in this article is 17.1 GHz.

Citation

 (See works that cites this article)
Javad Shafieha, Javad Nourinia, and Changiz Ghobadi, "Probing the Feed Line Parameters in Vivaldi Notch Antennas," Progress In Electromagnetics Research B, Vol. 1, 237-252, 2008.
doi:10.2528/PIERB07102702
http://test.jpier.org/PIERB/pier.php?paper=07102702

References


    1. Geran, F., G. Dadashzadeh, M. Faris, N. Hojjat, and A. Ahmadi, "Rectangular slot with a novel triangle ring microstrip feed for UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 387-396, 2007.
    doi:10.1163/156939307779367341

    2. Sadat, S., M. Fardis, F. G. Kharakhili, and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWB applications," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
    doi:10.2528/PIER06082901

    3. Sayem, A. M. and M. Ali, "Characteristics of a microstrip-FED miniature printed Hilbert slot antenna," Progress In Electromagnetics Research, Vol. 56, 1-18, 2006.
    doi:10.2528/PIER05041801

    4. Lewis, L. R., M. Fassett, and J. Hunt, A broadband stripline array element, Dig. 1974 IEEE Antennas Propagat. Symp., 335-337, Atlanta, GA, 1974.

    5. Gibson, P. J., The Vivaldi aerial, Proc. 9th European Microwave Conference, 103-105, 1979.

    6. Gazit, E., "Improved design of the Vivaldi antenna," IEEE Proceedings, Vol. 135, Pt. H, No. 2, 1988.

    7. Langley, J. D. S., P. S. Hall, and P. Newham, "Novel ultrawide-bandwidth Vivaldi antenna with low crosspolarisation," Electronics Letters, Vol. 29, No. 23, 1993.
    doi:10.1049/el:19931336

    8. Mehdipour, A., K. Mohammadpour-Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
    doi:10.2528/PIER07072904

    9. Yin, X., Z. Su, W. Hong, and T. J. Cui, An ultra wideband tapered slot antenna, Center for Computational Electromagnetics and State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096, 2005.

    10. Yoon, I. J., H. Kim, H. K. Yoon, Y. J. Yoon, and Y.-H. Kim, "Ultra-wideband tapered slot antenna with band cutoff characteristic," Electronics Letters, Vol. 41, No. 11, 2005.
    doi:10.1049/el:20050876

    11. Joardar, S. and A. B. Bhattacharya, "Two new ultra wideband dual polarized antenna-feeds using planar log periodic antenna and innovative frequency independent reflector," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1465-1479, 2006.
    doi:10.1163/156939306779274318

    12. Schaubert and Shin, "A parameter study of stripline-fed Vivaldi notch-antenna arrays," IEEE Trans. on Antennas and Propagation, Vol. 47, No. 5, 879-886, 1999.
    doi:10.1109/8.774151

    13. Yngvesson, et al., "The tapered slot antenna — A new integrated element for millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, No. 2, 365-374, 1989.
    doi:10.1109/22.20062

    14. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Dedham, MA, 1979.

    15. Cedn, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1785-1795, 2006.
    doi:10.1163/156939306779292273

    16. Lim, T. S., V. C. Koo, H. T. Ewe, and H. T. Chuah, "High-frequency phase error reduction in SAR using particle swarm of optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 795-810, 2007.
    doi:10.1163/156939307780749110

    17. Mitlineos, S. A., S. C. A. Thomopolous, and C. N. Capsalis, "Genetic design of dual-band, switched-beam dipole arrays, with elements failure correction, retaining constant excitation coefficients," Journal of Electromagnetic Waves and Applicaitons, Vol. 20, No. 14, 1925-1942, 2007.
    doi:10.1163/156939306779322738

    18. Rajarman, R., P. Gogineni, G. Prescott, and P. Kanagaratnam, Design of a wideband vivladi antenna array for the snow radar, B.E. (Electronic & Communication Engg.), Coimbator Inst. of Tech., India 2001, 2004.