Vol. 4

Latest Volume
All Volumes
All Issues
2008-01-10

Analysis of Output Power Delay in Coaxial Vircator

By Gholamreza Moradi, Ayaz Ghorbani, M. Rahdan, and H. Khadem
Progress In Electromagnetics Research B, Vol. 4, 1-12, 2008
doi:10.2528/PIERB07122501

Abstract

In this paper, a virtual cathode oscillator (VCO) is simulated based on FDTD algorithm. The geometrical structure is coaxial. Electromagnetic fields and current graphs are calculated. For the first time it has been shown that the delay between input pulse and output microwave signal originate from the waveguide transition delay time and the virtual cathode generation loop delay time.

Citation


Gholamreza Moradi, Ayaz Ghorbani, M. Rahdan, and H. Khadem, "Analysis of Output Power Delay in Coaxial Vircator," Progress In Electromagnetics Research B, Vol. 4, 1-12, 2008.
doi:10.2528/PIERB07122501
http://test.jpier.org/PIERB/pier.php?paper=07122501

References


    1. Carron, N. J., "Fields of particles and beams exiting a conductor," Progress In Electromagnetics Research, Vol. 28, 147-183, 2000.
    doi:10.2528/PIER99080102

    2. Li, Z. and J. Cui, "Sandwich-structure waveguides for very high-power generation and transmission using left-handed materials," Progress In Electromagnetics Research, Vol. 69, 101-116, 2007.
    doi:10.2528/PIER06121001

    3. Benford, J., J. A. Swegle, and E. Schamiloglu, High Power Microwaves, 2nd Ed., Taylor & Francis, 2007.

    4. Zherlitsyn, A. G., "Microwave generation by triode with coaxial-type virtual cathode," Pis’ma Zh. Tekh. Fiz., Vol. 16, No. 22, 78-80, 1990.

    5. Jiang, W., K. Woolverton, J. Dickens, and M. Kristiansen, "High power microwave generation by a coaxial virtual cathode oscillator," IEEE Trans. Plasma Sci., Vol. 27, No. 15, 1538-1542, 1999.
    doi:10.1109/27.799836

    6. Wang, Y. J., W. J. Koh, C. K. Lee, and K. Y. See, "Electromagnetic coupling analysis of transient signal through slots or apertures perforated in a shielding metallic enclosure using FDTD methodology," Progress In Electromagnetics Research, Vol. 36, 247-264, 2002.
    doi:10.2528/PIER02021701

    7. Idemen, M., "Derivation of the Lorentz transformations from Maxwell equations," Journal of Electromagnetic Waves and Applications, Vol. 19, 451, 2005.
    doi:10.1163/1569393053303884

    8. Jiang, W., K. Masugata, and K. Yatsui, "Mechanism of microwave generation by virtual cathode oscillation," Phys. Plasmas, Vol. 2, No. 3, 982-986, 1995.
    doi:10.1063/1.871377

    9. Platt, R., B. Anderson, J. Christofferson, J. Enns, M. Haworth, J. Metz, P. Pelletier, R. Rupp, and D. Voss, "Low-frequency, multigigawattmicrowave pulses generated by a virtual cathode oscillator," Appl. Phys. Lett., Vol. 54, No. 13, 1215-1216, 1989.
    doi:10.1063/1.100719

    10. Fazio, M. V., R. F. Hoeberling, and J. K. Wright, "Narrow-band microwave generation from an oscillating virtual cathode in a resonantcavity," J. Appl. Phys., Vol. 65, No. 3, 1321-1327, 1989.
    doi:10.1063/1.343028

    11. Scarpetti, R. D. and S. C. Burkhart, "The study of a reflex oscillatorused to generate high-power microwaves," IEEE Trans. Plasma Sci., Vol. 13, No. 6, 506-512, 1985.
    doi:10.1109/TPS.1985.4316465

    12. Davis, H. A., R. R. Bartsch, L. E. Thode, E. G. Sherwood, and R. M. Stringfield, "High-power microwave generation from a virtual cathodedevice," Phys. Rev. Lett., Vol. 55, No. 21, 2293-2296, 1985.
    doi:10.1109/TPS.1985.4316463

    13. Sze, H., J. Benford, T. Young, D. Bromley, and B. Harteneck, "A radiallyand axially extracted virtual-cathode oscillator (vircator)," IEEE Trans. Plasma Sci., Vol. 13, No. 6, 492-497, 1985.
    doi:10.2528/PIER05050903

    14. Puccini, A., "About the interference induced by electrons why does the electron behave like a wave," Progress In Electromagnetics Research, Vol. 58, 199-222, 2006.
    doi:10.2528/PIER05041403

    15. Bopp III, C. L. and C. M. Butler, "Analysis of transmission of a signal through a complex cylindrical/coaxial cavity by transmission line methods," Progress In Electromagnetics Research, Vol. 56, 33-51, 2006.
    doi:10.2528/PIER06071102

    16. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007.
    doi:10.1163/156939306777443015

    17. Rothenstein, B., S. Popescu, and G. J. Spix, "Relativistic derivations of the electric and magnetic fields generated by an electric point charge moving with constant velocity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1189-1194, 2006.
    doi:10.2528/PIER04052001

    18. Sabry, R. and S. K. Chaudhuri, "Formulation of emission from relativistic free electrons in a ring structure for electro-optical applications," Progress In Electromagnetics Research, Vol. 50, 135-161, 2005.
    doi:10.1109/TPS.2006.875762

    19. Xing, Q., D. Wang, F. Huang, and J. Deng, "Two-dimensional theoretical analysis of the dominant frequency in the inward-emitting coaxial vircator," IEEE Trans. Plasma Sci., Vol. 34, No. 3, 584-589, 2006.
    doi:10.2528/PIER97050700

    20. Hillion, P., "Electromagnetic pulses in dispersive media," Progress In Electromagnetics Research, Vol. 18, 245-260, 1998.
    doi:10.2528/PIER02021703

    21. Hillion, P., "Electromagnetic pulse propagation in dispersive media," Progress In Electromagnetics Research, Vol. 35, 299-314, 2002.
    doi:10.2528/PIER05051201

    22. Sten, J. C. and A. Hujanen, "Aspects on the phase delay and phase velocity in the electromagnetic near-field," Progress In Electromagnetics Research, Vol. 56, 67-80, 2006.