Vol. 5

Latest Volume
All Volumes
All Issues
2008-02-19

Support Vector Characterisation of the Microstrip Antennas Based on Measurements

By Nurhan Türker Tokan and Filiz Gunes
Progress In Electromagnetics Research B, Vol. 5, 49-61, 2008
doi:10.2528/PIERB08013006

Abstract

In this work, Support Vector Machine (SVM) formulation is worked out based upon ''L'' measured data for the resonant frequency, operation bandwidth, input impedance of a rectangular microstrip antenna. Results of the formulation are compared with the theoretical results obtained in literature, much better characterization is observed with greater accuracy. At the same time, Artificial Neural Network (ANN) is employed in generalization of the data on the resonant frequency, operation bandwidth, and input impedance of the antenna. Performances of the two advanced nonlinear learning machines are compared and superiority of the SVM is verified.

Citation


Nurhan Türker Tokan and Filiz Gunes, "Support Vector Characterisation of the Microstrip Antennas Based on Measurements," Progress In Electromagnetics Research B, Vol. 5, 49-61, 2008.
doi:10.2528/PIERB08013006
http://test.jpier.org/PIERB/pier.php?paper=08013006

References


    1. Balanis, C. A., Antenna Theory, John Wiley & Sons, Inc., 1997.

    2. Bahl, J. and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, 1980.

    3. Sagıroglu, S., K. Guney, and M. Erler, "Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptions," Int. Journal of RF and Microwave CAE, Vol. 9, 277-286, 1999.
    doi:10.1002/(SICI)1099-047X(199905)9:3<277::AID-MMCE11>3.0.CO;2-3

    4. Guney, K., M. Erler, and S. Sagıroglu, "Artificial neural networks for the resonant resistance calculation of electrically thin and thick rectangular microstrip antennas," Electromagnetics, Vol. 20, 387-400, 2000.
    doi:10.1080/027263400750064392

    5. Karaboga, D., K. Guney, S. Sagıroglu, and M. Erler, "Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas," IEE Proc. Microwaves, Antennas Propagation, Vol. 146, No. 2, 155-159, 1999.
    doi:10.1049/ip-map:19990136

    6. Li, L. and Y.-J. Xie, "Efficient algorithm for analyzing microstrip antennas using fast-multipole algorithm combined with fixed real-image simulated method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2177-2188, 2006.
    doi:10.1163/156939306779322521

    7. Akdagli, A., "An empirical expression for the edge extension in calculating resonant frequency of rectangular microstrip antennas with thin and thick substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1247-1255, 2007.

    8. Kumar, P., T. Chakravarty, S. Bhooshan, S. K. Khah, and A. De, "Numerical computation of resonant frequency of gap coupled circular microstrip antennas," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1303-1311, 2007.
    doi:10.1163/156939307783239465

    9. Yang, R., Y.-J. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007.
    doi:10.1163/156939307783134425

    10. Vapnik, V. N., Statistical Learning Theory, Wiley, New York, 1998.

    11. Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines (and Other Kernel-based Learning Methods), Cambridge University Press, 2000.

    12. Ganapathiraju, A., J. E. Hamaker, and J. Picone, "Applications of support vector machines to speech recognition," IEEE Trans. on Signal Processing, Vol. 52, No. 8, 2348-2356, 2004.
    doi:10.1109/TSP.2004.831018

    13. Rojo-Alvarez, J. L., G. Camps-Valls, M. Martinez-Ramon, E. Soria-Olivas, A. Navia-Vazquez, and A. R. Figueiras-Vidal, "Support vector machines framework for linear signal processing," Signal Processing, Vol. 85, No. 12, 2316-2326, 2005.
    doi:10.1016/j.sigpro.2004.12.015

    14. Wu, Y. Q., Z. X. Tang, B. Zhang, and Y. H. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
    doi:10.2528/PIER07012801

    15. Christodoulou, C., M. Martinez-Ramon, and C. Balanis, "Support Vector Machines for Antenna Array Processing and Electromagnetics," Morgan & Claypool Publishers, 2006.

    16. Pastorino, M. and A. Randazzo, "A smart antenna system for direction of arrival estimation based on a support vector regression," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2161-2168, 2005.
    doi:10.1109/TAP.2005.850735

    17. Zhao, Q. and J. Principe, "Automatic target recognition with support vector machines," Neural Information Processing Systems Workshop on Large Margin Classifiers, 1998.

    18. Xia, L., R. Xu, and B. Yan, "LTCC interconnect modeling by support vector regression," Progress In Electromagnetics Research, Vol. 69, 67-75, 2007.
    doi:10.2528/PIER06120503

    19. Gunes, F., N. Turker, and F. Gurgen, "Signal-noise support vector model of a microwave transistor," Int. Journal of RF and Microwave CAE, Vol. 17, 404-415, 2007.
    doi:10.1002/mmce.20239

    20. Xu, Y. H., Y. Guo, L. Xia, and Y. Q. Wu, "A support vector regression based nonlinear modeling method for Sic Mesfet," Progress In Electromagnetics Research Letters, Vol. 2, 103-114, 2008.

    21. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
    doi:10.1163/156939306777442917

    22. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural neworks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
    doi:10.2528/PIERB07112806

    23. Mohamed, M. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
    doi:10.1163/156939306776930240

    24. Zainud-Deen, S. H., H. A. Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
    doi:10.2528/PIERB07111801

    25. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
    doi:10.2528/PIER06120802

    26. Ayestaran, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
    doi:10.1163/156939306779322594

    27. Pozar, D. M., "Microstrip antennas," Proc.. IEEE, Vol. 80, No. 1, 79-81, 1992.
    doi:10.1109/5.119568

    28. Kara, M., "A novel technique to calculate the bandwidth of rectangular microstrip antenna elements with thick substrates ," Microwave Opt. Technol. Lett., Vol. 12, 59-64, 1996.
    doi:10.1002/(SICI)1098-2760(199605)12:1<16::AID-MOP4>3.0.CO;2-R

    29. Kara, M., "A simple technique for the calculation of bandwidth of rectangular microstrip antenna elements with various substrate thicknesses," Microwave Opt. Technol. Lett., Vol. 12, 16-20, 1996.
    doi:10.1002/(SICI)1098-2760(199605)12:1<16::AID-MOP4>3.0.CO;2-R

    30. Kara, M., "The calculation of the input resistance of rectangular microstrip antenna elements with various substrate thicknesses," Microwave Opt. Technol. Lett., Vol. 13, 137-142, 1996.
    doi:10.1002/(SICI)1098-2760(19961020)13:3<137::AID-MOP7>3.0.CO;2-O

    31. Kara, M., "An efficient technique for the computation of the input resistance of rectangular microstrip antenna elements with thick substrates," Microwave Opt. Technol. Lett., Vol. 13, 363-369, 1996.
    doi:10.1002/(SICI)1098-2760(19961220)13:6<363::AID-MOP14>3.0.CO;2-4

    32. Carver, K. R., "Practical analytical techniques for the microstrip antenna," Proceedings of Workshop on Printed Circuit Antenna Technology, 1979.

    33. Chang, E., S. A. Long, and W. F. Richards, "An experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 34, No. 6, 767-772, 1986.
    doi:10.1109/TAP.1986.1143890

    34. Kara, M., "The resonant frequency of rectangular microstrip antenna elements with various substrate thicknesses," Microw. Opt. Technol. Lett., Vol. 11, 55-59, 1996.
    doi:10.1002/(SICI)1098-2760(19960205)11:2<55::AID-MOP1>3.0.CO;2-N

    35. Kara, M., "Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates," Microw. Opt. Technol. Lett., Vol. 12, 131-136, 1996.
    doi:10.1002/(SICI)1098-2760(19960620)12:3<131::AID-MOP4>3.0.CO;2-I

    36. Guney, K., "Radiation quality factor and resonant resistance of rectangular microstrip antennas," Microwave Opt. Technol. Lett., Vol. 7, 427-430, 1994.
    doi:10.1002/mop.4650070915

    37. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propagat., Vol. 29, 2-24, 1981.
    doi:10.1109/TAP.1981.1142523

    38. Guney, K., "Bandwidth of a resonant rectangular microstrip antenna," Microwave Opt. Technol. Lett., Vol. 7, 521-524, 1994.
    doi:10.1002/mop.4650071113

    39. Howell, J. Q., "Microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 23, 90-93, 1975.
    doi:10.1109/TAP.1975.1141009

    40. Hammerstad, E. O., Equations for microstrip circuits design, Proceedings of Fifth European Microwave Conference, 268-272, Hamburg, 1975.

    41. James, J. R., P. S. Hall, and C. Wood, Microstrip Antennas - Theory and Design, Peter Peregrinus Ltd., 1981.