The Sub-Entire-Domain (SED) basis function method has been applied to solve electromagnetic problems of irrectangular periodic structures with finite sizes efficiently. Three typical irrectangular periodic structures such as parallelogrammic periodic structures, triangular periodic structures, and trapeziform periodic structures are investigated using the SED basis function method. Just as the SED basis functions for rectangular periodic structures, the new SED basis functions for irrectangular periodic structures are defined on the support of each single cell, and the corresponding dummy cells are introduced to obtain the new SED basis functions. Using the proposed SED basis function method, the original large-scale problem is decomposed into two small-size problems. One is the determination of new SED basis functions, and the other is to solve the whole problem using MoM and SED basis functions. Numerical examples are given to prove the validity and efficiency of the new method.
2. Toyama, H. and K. Yasumoto, "Electromagnetic scattering from periodic arrays of composite circular cylinder with internal cylindrical scatterers," Progress In Electromagnetics Research, Vol. 52, 321-333, 2005.
doi:10.2528/PIER04100101
3. Qing, A., "Vector spectral-domain method for the analysis of frequency selective surfaces," Progress In Electromagnetics Research, Vol. 65, 201-232, 2006.
doi:10.2528/PIER06091401
4. Yousefzadeh, N., C. Ghobadi, and M. Kamyab, "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.
doi:10.2528/PIER06081401
5. Hosseini, M., A. Pirhadi, and M. Hakkak, "A novel AMC with little sensitivity to the angle of incidence using 2-layer jerusalem cross FSS," Progress In Electromagnetics Research, Vol. 64, 43-51, 2006.
doi:10.2528/PIER06061301
6. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Bandwidth enhancement of the probe fed microstrip antenna using frequency selective surface as electromagnetic bandgap superstrate," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801
7. Ran, L., J. Huangfu, H. Chen, X. M. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed matamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502
8. Yao, H. Y., L. W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from microscopic 2-D isotropic cross split-ring resonator array," Progress In Electromagnetics Research, Vol. 51, 197-217, 2005.
doi:10.2528/PIER04020301
9. Du, P., B.-Z. Wang, H. Li, and G. Zheng, "Scattering analysis of large-scale periodic structures using the sub-entire domain basis function method and characteristic fucntion method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2085-2094, 2007.
doi:10.1163/156939307783152957
10. Lu, W. B. and T. J. Cui, "Efficient method for full-wave analysis of large-scale finite-sized periodic structure," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2157-2168, 2007.
doi:10.1163/156939307783152812
11. Li, D., Y. J. Xie, P. Wang, and R. Yang, "Applications of splitring resonances on multi-band frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1551-1563, 2007.
12. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818
13. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C
14. Song, J. M. and W. C. Chew, "Multilevel fast multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave Opt. Technology Lett., Vol. 10, No. 1, 14-19, 1995.
doi:10.1002/mop.4650100107
15. Cui, T. J., W. C. Chew, G. Chen, and J. M. Song, "Efficient MLFMA, RPFMA and FAFFA algorithms for EM scattering by very large structures," IEEE Trans. Antennas Propagat., Vol. 52, 759-770, 2004.
doi:10.1109/TAP.2004.825491
16. Suter, E. and J. Mosig, "A subdomain multilevel approach for the MoM analysis of large planar antennas," Microwave Opt. Technology Lett., Vol. 26, 270-227, 2000.
doi:10.1002/1098-2760(20000820)26:4<270::AID-MOP20>3.0.CO;2-C
17. Matekovits, L., G. Vecchi, G. Dassano, and M. Orefice, Synthetic function analysis of large printed structures: The solution space sampling approach, 2001 IEEE AP-S Int. Symp., 568-571, Boston, MA, 2001.
18. Yeo, J. and R. Mittra, Numerically efficient analysis of microstrip antennas using the characteristic basis function method (CBFM), 2003 IEEE AP-S Int. Symp., Columbus, Ohio, 2003.
19. Yeo, J., V. V. S. Prakash, and R. Mittra, "Efficient analysis of a class of microstrip antennas using the characteristic basis fucntion method (CBFM)," Microwave Opt. Technology Lett., Vol. 39, 456-464, 2003.
doi:10.1002/mop.11247
20. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficent solution of method of moments matrix equations," Microwave Opt. Technology Lett., Vol. 36, 95-100, 2003.
doi:10.1002/mop.10685
21. Lu, W. B., T. J. Cui, Z. G. Qian, X. X. Yin, and W. Hong, "Accurate analysis of large-scale periodic structures using an efficient sub-entire-domain basis function method," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 3078-3085, 2004.
doi:10.1109/TAP.2004.835143
22. Lu, W. B., T. J. Cui, X. X. Yin, Z. G. Qian, and W. Hong, "Fast algorithms for large-scale periodic structures using subentire domain basis functions," IEEE Trans. Antennas Propagat., Vol. 53, No. 3, 1154-1162, 2005.
doi:10.1109/TAP.2004.842635
23. Lu, W. B., T. J. Cui, and H. Zhao, "Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions," IEEE Trans. Antennas Propagat., Vol. 55, No. 2, 414-421, 2007.
doi:10.1109/TAP.2006.889805