Analysis of U-slot loaded patch stacked with H-shaped parasitic elements is given in this paper. It is found that the antenna exhibits dual resonance and both the resonance frequency (upper and lower) depends directly on slot width and inversely on slot length. Both upper and lower resonance frequency increase with increasing the value of h2. Typically the bandwidth at lower and upper resonance is found 3.66% and 10.25% respectively. The radiated power at higher frequency (beamwidth 64o) is 0.73 dB as compared to lower resonance frequency (beamwidth 71o). The theoretical results are compared with the simulated data obtained from IE3D.
2. Lee, K. F., et al., "Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna," Proc. Inst. Elect. Eng. Microw. Antenna Propa., Vol. 144, 354-358, 1997.
doi:10.1049/ip-map:19971334
3. Sanad, M., "Double C-patch antennas having different aperture shapes," Proc. IEEE, AP-S Symp., 2116-2119, 1995.
4. Yang, F., et al., "Wide band E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propag., Vol. 49, 1094-1100, 2001.
doi:10.1109/8.933489
5. Dahele, J. S., K. F. Lee, and D. P. Wond, "Dual frequency stacked annular ring microstrip antenna," IEEE Trans. Antennas Propag., Vol. 35, 1281-1285, 1987.
doi:10.1109/TAP.1987.1143997
6. Fan, Z. and K. F. Lee, "Hankel transform domain analysis of dual frequency stacked circular disk and annular ring microstrip antenna," IEEE Trans. Antennas Propag., Vol. 39, 867-870, 1979.
7. Long, S. A. and M. D. Walton, "A dual frequency stacked circular disk antenna," IEEE Trans. Antennas Propag. Soc. Int. Symp. Dig., Vol. 27, 270-273, 1979.
doi:10.1109/TAP.1979.1142078
8. Sappan, A., "A new broadband stacked two layered microstrip antenna," IEEE Trans. Antennas Propag. Soc. Int. Symp. Dig., Vol. 22, 251-254, 1984.
9. Chen, C. H., A. N. Tulintseff, and R. M. Sorbello, "Broadband two layer microstrip antenna," IEEE Trans. Antennas Propag. Soc. Int. Symp. Dig., 270-273, 1984.
10. Tulintseff, A. N., S. M. Ali, and J. A. Kong, "Input impedance of a prob fed stacked circular microstrip antenna," IEEE Trans. Antennas and Propag. (USA), Vol. 39, 387, 1991.
11. Jiri, S., "Analysis of multilayer microstrip lines by a conformal mapping method," IEEE Trans. Microw. Theory Tech. (USA), Vol. 40, 769, 1992.
doi:10.1109/22.127530
12. Bahal, I. J. and P. Bhartia, Microstrip Antennas, Artech house, Dedham, MA, 1980.
13. Zhang, X. X. and F. Yang, "Study of slit cut microstrip antenna and its application," Microwave Optical Technol. Lett., Vol. 18, 297-300, 1998.
doi:10.1002/(SICI)1098-2760(199807)18:4<297::AID-MOP14>3.0.CO;2-1
14. Bahal, I. J., Lumped Elements for RF and Microwave Circuits, Artech House, Boston, 2003.
15. Abboud, F., J. P. Damiano, and A. Papiernik, "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," Proc. Ins. Elect. Eng. Microwaves, Antennas and Propagation, Vol. 135, No. 5, 323-326, 1988.
16. Deshmukh, A. A. and G. Kumar, "Formulation of resonant frequency for compact rectangular microstrip antennas," Microwave and Optical Technology Letters, Vol. 49, No. 2, 2007.
doi:10.1002/mop.22161
17. Garg, R. and I. J. Bahal, "Microstrip discontinuities," Int. J. Electronics, Vol. 45, 81-87, 1978.
doi:10.1080/00207217808900883
18. Wolfgang and J. R. Hoefer, "Equivalent series inductivity of a narrow transverse slit in microstrip," IEEE Trans. Microw. Theory Tech. (USA), Vol. 25, 822, 1997.
19. Meshram, M. K. and B. R. Vishvakarma, "Gap coupled microstrip array antenna for wide band operation," Int. J. Electron (U.K.), Vol. 88, 1161, 2001.
20. Pandey, V. K. and B. R. Vishvakarma, "Theoretical analysis of linear array antenna of stacked patches," Indian J. and Space Physics, Vol. 34, 125, 2005.
21., IE3D Zeland software, USA, version 11.15, 2005.