We propose a numerical methodto solve the problem of coupling through finite, but otherwise arbitrary apertures in perfectly conducting and vanishingly thin parallel planes. The problem is given a generic formulation using the Method of Moments and the Green's function in the region between the two planes is evaluated using Ewald's method. Numerical applications using Glisson's basis functions to solve the problem are demonstrated and compared with previously published results and the output of FDTD software.
2. Butler, C. M., Y. Rahmat-Samii, and R. Mittra, "Electromagnetic penetration through apertures in conducting surfaces," IEEE Transactions on Electromagnetic Compatibility, Vol. AP-26, No. 1, 1978.
3. Harrington, R. F. and J. R. Mautz, "Electromagnetic transmission through an aperture in a conducting plane," Archiv fuer Elektronik und Uebertragungstechnik, Vol. 31, 1977.
4. Harrington, R. F., Field Computation by Moment Methods, Macmillan Series in Electrical Sciences, The Macmillan Company, 1968.
5. Leviatan, Y., R. F. Harrington, and J. R. Mautz, "Electromagnetic transmission through apertures in a cavity in a thick conductor," IEEE Transactions on Antennas and Propagation, Vol. AP-30, No. 6, 1982.
6. Leviatan, Y., "Electromagnetic coupling between two half-space regions separated by two slot-perforated parallel conducting screens," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 1, 1988.
doi:10.1109/22.3480
7. Rahmat-Samii, Y., "Electromagnetic pulse coupling through an aperture into a two-parallel-plate region," IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-20, No. 3, 1978.
doi:10.1109/TEMC.1978.303676
8. Ewald, P. P., "Die berechnung optischer und elektrostatischer gitterpotentiale," Annalen der Physik, Vol. 369, No. 3, 1921.
doi:10.1002/andp.19213690304
9. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," Journal of Computational Physics, Vol. 63, No. 1, 1986.
doi:10.1016/0021-9991(86)90093-8
10. Capolino, F., D. Wilton, and W. Johnson, "Efficient computation of the 2-d Green's function for 1-d periodic structures using the Ewald method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 2005.
doi:10.1109/TAP.2005.854556
11. Park, M.-J. and S. Nam, "Efficient calculation of the Green's function for multilayered planar periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1998.
12. Park, M.-J., J. Park, and S. Nam, "Efficient calculation of the Green's function for the rectangular cavity," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 3, 1998.
13. Parker, E. A., J. Robertson, B. Sanz-Izquierdo, and J. C. Batchelor, "Minimal size FSS for long wavelength operation," Electronic Letters, Vol. 44, March 2008.
14. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 1982.
doi:10.1109/TAP.1982.1142818
15. Harrington, R. F., Time-harmonic Electromagnetic Fields, Electrical and Electronic Engineering Series, McGraw-Hill Book Company, Inc., 1961.
16. Jorgenson, R. E., L. I. Basilio, W. A. Johnson, L. K. Warne, D. W. Peters, D. R. Wilton, and F. Capolino, "Analysis of electromagnetic scattering by nearly periodic structures: An LDRD report,", Tech. Rep. SAND2006-6833, Sandia National Laboratories, 2006.
17. Kustepeli, A. and A. Q. Martin, "On the splitting parameter in the Ewald method," IEEE Transactions on Microwave and Guided Wave Letters, 2000.