Vol. 8

Latest Volume
All Volumes
All Issues

Spatiotemporally Localized Null Electromagnetic Waves I. Luminal

By Ioannis Besieris and Amr Shaarawi
Progress In Electromagnetics Research B, Vol. 8, 1-28, 2008


Spatiotemporally localized luminal null electromagnetic fields are transverse with respect to the local flow of energy,whic h is equipartioned between the electric and magnetic fields,and the modulus of their local energy transport velocity equals the speed of light in vacuo. They have vortex structures on planes transverse to the direction of propagation,and,in general,are relatively simple so that explicit calculations can be made of the total energy and the total angular momentum they carry. A class of luminal null electromagnetic waves due originally to Robinson and Troutman is motivated by means of spherical Cunningham and Bateman transformations and their relationships to well-known scalar luminal localized waves are examined. This allows for the introduction of finite-energy localized null luminal electromagnetic waves with spatiotemporal spectra appropriate for applications in diverse physical areas.


Ioannis Besieris and Amr Shaarawi, "Spatiotemporally Localized Null Electromagnetic Waves I. Luminal," Progress In Electromagnetics Research B, Vol. 8, 1-28, 2008.


    1. Brittingham, J. N., "Focus wave modes in homogeneous Maxwell equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 1983.

    2. Kiselev, A. P., "Modulated Gaussian beams," Radio Phys. Quant. Electron., Vol. 26, 1014, 1983.

    3. Belanger, P. A., "Packetlike solutions of the homogeneous wave equation," J. Opt. Soc. A, Vol. 1, 723, 1984.

    4. Ziolkowski, R. W., "Exact solutions of the wave equation with complex source locations," J. Math. Phys., Vol. 26, 861-863, 1984.

    5. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.

    6. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.

    7. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Localized wave representations of acoustic and electromagnetic radiation," Proc. IEEE, Vol. 79, 1371-1378, 1991.

    8. Grunwald, R., V. Kebbel, U. Griebner, U. Neumann, A. Kummrow, M. Rini, E. T. Nibbering, M. Piche, G. Rousseau, and M. Fortin, "Generation and characterization of spatially and temporally localized few-cycle optical wave packets," Phys. Rev. A, Vol. 67, 063820, 1-5, 2003.

    9. Ziolkowski, R. W., D. K. Lewis, and B. D. Cook, "Experimental verification of the localized wave transmission effect," Phys. Rev. Lett., Vol. 62, 147-150, 1989.

    10. Ziolkowski, R. W. and D. K. Lewis, "Verification of the localized wave transmission effect," J. Appl. Phys., Vol. 68, 6083-6086, 1990.

    11. Reivelt, K. and P. Saari, "Experimental demonstration of realizability of optical focus wave modes," Phys. Rev. E, Vol. 66, 056611-1-9, 2002.

    12. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. II, Interscience, New York, 1962.

    13. Hillion, P., "Courant-Hilbert solutions of the wave equation," J. Math Phys., Vol. 33, 34-45, 1992.

    14. Bateman, H., "The conformal transformations of four dimensions and their applications to geometrical optics," Proc. London Math. Soc., Vol. 7, 70-89, 1909.

    15. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Dover, New York, 1955.

    16. Borisov, V. V. and A. B. Utkin, "Generalization of Brittingham's localized solutions to the wave equation," Euro. Phys. J. B, Vol. 21, 477-480, 2001.

    17. Kiselev, A. P., "Generalization of Bateman-Hillion progressive wave and Bessel-Gauss pulse solutions to the wave equation ," J. Phys. A: Math. Gen., Vol. 36, L345-L349, 2003.

    18. Besieris, I. M. and A. M. Shaarawi, "Bateman conformal transformations within the framework of the bidirectional spectral representation," Progress In Electromagnetics Research, Vol. 48, 201-231, 2004.

    19. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Aperture realizations of the exact solutions to homogeneous-wave equations," J. Opt. Soc. Am. A, Vol. 10, 75-87, 1993.

    20. Shaarawi, A. M., I. M. Besieris, R. W. Ziolkowski, and S. M. Sedky, "Generation of approximate focus wave mode pulses from wide-band dynamic Gaussian aperture ," J. Opt. Soc. Am. A, Vol. 12, 1954-1964, 1995.

    21. Kiselev, A. P. and M. V. Perel, "Highly localized solutions of the wave equation," J. Math. Phys., Vol. 41, 1934-1955, 2000.

    22. Heyman, E., "Pulsed beam propagation in an inhomogeneous medium," IEEE Trans. Antennas Propag., Vol. 42, 311-319, 1994.

    23. Cunningham, E., "The principle of relativity in electrodynamics and an extension thereof," Proc. London Math. Soc., Vol. 8, 77-98, 1909.

    24. Bateman, H., "The transformation of the electrodynamical equations," Proc. London Math. Soc., Vol. 8, 223-264, 1910.

    25. Bateman, H., "The transformations of coordinates which can be used to transform one physical problem into another," Proc. London Math. Soc., Vol. 8, 469-488, 1910.

    26. Robinson, I., "Null electromagnetic fields," J. Math. Phys., Vol. 2, 290-291, 1961.

    27. Robinson, I. and A. Troutman, "Some spherical gravitational waves in general relativity," Proc. R. Soc. London, Series A,265, 463, 1962.

    28. Robinson, I. and A. Troutman, New Theories in Physics: Roc. Warsaw Symp. On Elementary Particle Physics, Z. Ajduk et al. (eds.), 454–497, Singapore World Scientific, 1989.

    29. Troutman, A., "Robinson manifolds and Cauchy-Riemann spaces," Class. Quantum Grav., Vol. 19, R1-R10, 2002.

    30. Penrose, R. and W. Rindler, Spinors and Space-Time, Vol. 2, Cambridge University Press, 1986.

    31. Bialynicki-Birula, I., "Electromagnetic vortex lines riding atop null solutions of the Maxwell equations," J. Opt. A: Pure Appl. Opt., Vol. 6, S181-S183, 2004.

    32. Weber, H., Die Partiellen Differential-Gleichungen der Mathematischen Physik nach Riemann's Vorlesungen, Friedrich Vieweg und Sohn, Brunschweig, 1901.

    33. Silberstein, L., "Electromagnetische grundgleichungen in bivectorieller behandlung," Ann. d. Phys., Vol. 22, 579-586, 1907.

    34. Feng, S., H. G. Winful, and R. W. Hellwarth, "Spatio-temporal evolution of single-cycle electromagnetic pulses," Phys. Rev. E, Vol. 59, 4630-4649, 1999.

    35. Lekner, J., "Energy and momentum of electromagnetic pulses," J. Opt. A: Pure Appl. Opt., Vol. 6, 146-147, 2004.

    36. Shaarawi, A. M., "Nondispersive wavepackets," Ph.D. Thesis, Virginia Polytechnic Inst. and State Univ., 1989.

    37. Overfelt, P ., "Bessel-Gauss pulses," Phys. Rev. A, Vol. 44, 3941-3947, 1991.

    38. Bialynicki-Birula, I. and Z. Bialynicki-Birula, "Vortex lines of the electromagnetic field," Phys. Rev. A, Vol. 67, 062114-1, 2003.

    39. Berry, M., "Riemann-Silberstein vortices for paraxial waves," J. Opt. A: Pure Appl. Opt., Vol. 6, S175-7, 2003.

    40. Kaiser, G., "Helicity, polarization and Riemann-Silberstein vortices," J. Opt. A: Pure Appl. Opt., Vol. 6, S243-5, 2003.

    41. Lekner, J., "Helical light pulses," J. Opt. A: Pure Appl. Opt., Vol. 6, L29-L32, 2004.

    42. Desyatnikov, A. S., Y. S. Kivshar, and L. Torner, "Optical vortices and vortex solitons," Progress in Optics, Vol. 47, 291-391, E. Wolf (ed.), North-Holland, 2005.

    43. Molina-Terriza, G., J. P. Torres, and L. Torner, "Management of the angular momentum of light; preparation of photons in multidimensional vector states of angular momentum," Phys. Rev. Lett., Vol. 88, 0136011-4, 2002.