Vol. 14

Latest Volume
All Volumes
All Issues
2009-03-27

Multi-Polarization Dimensionality of Multi-Antenna Systems

By Michel Elnaggar, Sujeet Chaudhuri, and Safieddin Safavi-Naeini
Progress In Electromagnetics Research B, Vol. 14, 45-63, 2009
doi:10.2528/PIERB08050402

Abstract

Based on the deterministic Maxwellian framework, we investigate the ability of each of the dual fields (electric and magnetic) in carrying independent information in a multi-polarization MIMO system. We quantify the performance by using a well-defined power independent dimensionality (PID) metric. We present numerical results for 3 deterministic scenarios: a canonical free-space (near and far field exact solution), a canonical PEC corridor (using rigorous modal analysis) and a lossy-wall corridor (using image ray tracing). The deterministic results show that in a multi-path rich environment, the hexapole system (collocated polarized electric and magnetic point radiators) is almost guaranteed to provide more than 3 DOF. However, in the simulated scenarios, the maximum 6 DOF are never attained due to the inevitable coupling between the electric and magnetic fields. On the other hand, for a tripole system, the upper-limit of 3 DOF is achievable.

Citation


Michel Elnaggar, Sujeet Chaudhuri, and Safieddin Safavi-Naeini, "Multi-Polarization Dimensionality of Multi-Antenna Systems," Progress In Electromagnetics Research B, Vol. 14, 45-63, 2009.
doi:10.2528/PIERB08050402
http://test.jpier.org/PIERB/pier.php?paper=08050402

References


    1. Andrews, M. R., P. Mitra, and R. De Carvalho, "Tripling the capacity of wireless communications using electromagnetic polarization," Nature, Vol. 409, 316-318, Jan. 2001.
    doi:10.1038/35053015

    2. Svantesson, T., M. A. Jensen, and J. W. Wallace, "Analysis of electromagnetic field polarizations in multiantenna systems," IEEE Trans.Wir eless Comm., Vol. 3, 641-646, Mar. 2004.
    doi:10.1109/TWC.2003.821146

    3. Piestun, R. and D. A. B. Miller, "Electromagnetic degrees of freedom of an optical system," Optical Society of America, Vol. 17, 892-902, May 2000.
    doi:10.1364/JOSAA.17.000892

    4. Poon, A. S. Y., R. W. Brodersen, and D. N. C. Tse, "Degrees of freedom in multiple-antenna channels: A signal space approach," IEEE Trans.Information Theory, Vol. 51, 523-536, Feb. 2005.
    doi:10.1109/TIT.2004.840892

    5. Sarkar, T. K., M. Salazar-Palma, M. Wicks, and R. J. Bonneau, , Smart Antennas, John Wiley & Sons, 2003.

    6. Sarkar, T. K., S. Burintramart, N. Yilmazer, S. Hwang, Y. Zhang, A. De, and M. Salazar-Palma, "A discussion about some of the principles/practices of wireless communication under a Maxwellian framework," IEEE Trans.A ntennas Propagation, Vol. 54, 3727-3745, Dec. 2006.
    doi:10.1109/TAP.2006.886522

    7. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 1961.

    8. Clemmow, P. C., The Plane Wave Spectrum Representation of Electromagnetic Fields, Oxford Pergamon Press, 1966.

    9. Balanis, C., Antenna Theory Analysis and Design, John Wiley & Sons, 1997.

    10. Elnaggar, M., S. Safavi-Naeini, and S. K. Chaudhuri, "Effect of oversimplifying the simulated indoor propagation on the deterministic MIMO capacity," IEEE Canadian Conference on Electrical and Computer Engineering (CCECE 2004), Vol. 1, 219-222, Niagara Falls, ON, May 2004.

    11. Elnaggar, M. S., S. Safavi-Naeini, and S. K. Chaudhuri, "A novel dimensionality metric for multi-antenna systems," Proceedings of Asia-Pacific Microwave Conference (APMC2006), Yokohama, Japan, Dec. 2006.