Vol. 8

Latest Volume
All Volumes
All Issues
2008-06-02

An Approach to Equivalent Circuit Modeling of Rectangular Microstrip Antennas

By Mohammadali Ansarizadeh, Ayaz Ghorbani, and Raed A. Abd-Alhameed
Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008
doi:10.2528/PIERB08050403

Abstract

Computation of the broadband matching potential of a microstrip antenna requires the wideband lumped equivalent circuit of the antenna. The general topology of the equivalent circuit of rectangular microstrip patch antennas has been used to model the feedpoint impedance of microstrip antennas over a wide frequency band and equivalent circuit parameters are determined using optimization techniques. The proposed procedure overcomes the problems of physical realizability of the equivalent circuit and estimation of the starting values of the optimization. Applying this technique, wideband lumped equivalent circuits of a rectangular and E-shaped microstrip antenna have been computed which are in good agreement with measurement data from 0.1 to 6 GHz.

Citation


Mohammadali Ansarizadeh, Ayaz Ghorbani, and Raed A. Abd-Alhameed, "An Approach to Equivalent Circuit Modeling of Rectangular Microstrip Antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403
http://test.jpier.org/PIERB/pier.php?paper=08050403

References


    1. Ghorbani, A. and R. A. Abd-Alhameed, "An approach for calculating the limiting bandwidth — Reflection coefficient product for microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1328-1331, Apr. 2006.
    doi:10.1109/TAP.2006.872641

    2. Ghorbani, A. and M. A. Ansarizadeh, "The bode-fano integrals as an objective measure of antenna bandwidth reflection coefficient product limit ," 2006 International RF and Microwave Conference Proceedings, Putrajaya, Malaysia, Sept. 12–14, 2006.

    3. Zhu, L. and Y. Qi, "A novel approach to evaluating the gainbandwidth potential of antennas," Antennas and Propagation SocietyInternational Symposium, AP-S. Digest, Vol. 3, 2058-2061, Jul. 1996.

    4. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetics Research, Vol. 62, 1-20, 2006.
    doi:10.2528/PIER06033003

    5. Fano, R. M., "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Institution, Vol. 249, 57-83, 139–155, Jan./Feb. 1950.

    6. Youla, D. C., "A new theory of broadband matching ," IEEE Trans. on Circuit Theory, Vol. 11, 30-50, Mar. 1964.

    7. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.

    8. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedancematching technique for high-temperature superconducting microstrip antennas ," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
    doi:10.2528/PIER07082502

    9. Abdelaziz, A. A., "Bandwidth enhancement of microstrip antenna," Progress In Electromagnetics Research, Vol. 63, 311-317, 2006.
    doi:10.2528/PIER06053001

    10. Abboud, F., "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," IEE Proceedings, Vol. 135, Pt. H, No. 5, Oct. 1988.

    11. Kajfez, D., "Deembedding of lossy foster networks," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 1328-1331, Oct. 2005.

    12. Kim, Y. and H. Ling, "Equivalent circuit modeling of broadband antennas using a rational function approximation," Microwave and Optical Technology Letters, Vol. 48, No. 5, 950-953, May 2006.
    doi:10.1002/mop.21529

    13. Wang, Y., J. Li, and L.-X. Ran, "An equivalent circuit modeling method for ultra-wideband antennas," Progress In Electromagnetics Research, Vol. 82, 433-445, 2008.
    doi:10.2528/PIER08032303

    14. Yarman, B. S., A. Kilinc, and A. Aksen, "Immitance data modelling via linear interpolation techniques: A classical circuit theory approach," International Journal of Circuit Theory and Applications, Vol. 32, 537-563, 2004.
    doi:10.1002/cta.295

    15. Richards, W., "An improved theory for microstrip patches," IEE Proc., Vol. 132, Pt. H, 93-98, 1985.

    16. Yang, F., X.-Z. Zhang, and Y. R. Samii, "Wideband E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propagat., Vol. 49, No. 7, Jul. 2001.

    17. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
    doi:10.2528/PIER07061909

    18. Ansari, J. A. and R. B. Ram, "E-shaped patch symmetrically loaded with tunnel diodes for frequency agile/broadband operation ," Progress In Electromagnetics Research B, Vol. 1, 29-42, 2008.
    doi:10.2528/PIERB07101202

    19. Jolani, F., A. M. Dadgarpour, and H. R. Hassani, "Compact Mslot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
    doi:10.2528/PIERL08012801

    20. Sadat, S., M. Fardis, F. G. Kharakhili, and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWBA applications," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
    doi:10.2528/PIER06082901

    21. Khodae, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth ," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
    doi:10.2528/PIERB07112201

    22. Sadat, S., M. Houshmand, and M. Roshandel, "Design of a microstrip square-ring slot antenna filled by an H-shape slot for UWB applications," Progress In Electromagnetics Research, Vol. 70, 191-198, 2007.
    doi:10.2528/PIER07012002

    23. Alkanhal, M. A. S. and A. F. Sheta, "A novel dual-band reconfigurable square-ring microstrip antenna," Progress In Electromagnetics Research, Vol. 70, 337-349, 2007.
    doi:10.2528/PIER07020703