Based on dielectric resonators, the design and implementation of planar left-handed metamaterials made of dielectric blocks are investigated in this paper. By etching simple metallic patterns on surface of the dielectric blocks, field distributions of the desired resonance modes can be enhanced while those of the undesired are suppressed. In this way, the resonance frequency of the desired mode can be tuned down to lower frequency range. A wide-angle polarization-independent planar left-handed metamaterial based on disk-like dielectric resonators is proposed and analyzed. Such a left-handed metamaterial is independent of the polarization of incident waves. Moreover, its double-negative property keeps almost the same under a wide range of incident angles. At the end, practical implementation of the lefthanded metamaterial by using flexible supporting slabs is given. Due to its polarization-independence, wide range of incident angle and high flexibility, the proposed left-handed metamaterial is ready to be used in various microwave components, such as antenna radomes, microwave filters and frequency selective surfaces.
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
3. Xi, S., H. Chen, B. I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, PIER 84, 279-287, 2008.
doi:10.2528/PIER08062105
4. Ran, L., J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, PIER 51, 249-279, 2005.
5. Wang, J. F., S. B. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang, H. Ma, and Ch. Gu, "A candidate three-dimensional GHz left-handed metamaterial composed of coplanar magnetic and electric resonators," Photon Nanostruct: Fundam Appl., Vol. 6, 183, 2008.
doi:10.1016/j.photonics.2008.08.001
6. Zhou, J. F., L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, Phys. Rev. B, Vol. 73, 041101, 2006.
doi:10.1103/PhysRevB.73.041101
7. Dolling, G., C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett., Vol. 30, 3198-3200, 2005.
doi:10.1364/OL.30.003198
8. Alici, K. B. and E. Ozbay, "A planar metamaterial: Polarization independent fishnet structure," Photonics Nanostruct: Fundam. Appl., Vol. 6, 102-107, 2008.
doi:10.1016/j.photonics.2008.01.001
9. Kafesaki, M., I. Tsiapa, N. Katsarakis, Th. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
doi:10.1103/PhysRevB.75.235114
10. Guven, K., A. O. Cakmak, M. D. Caliskan, T. F. Gundogdu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Bilayer metamaterial: Analysis of left-handed transmission and retrieval of effective medium parameters," J. Opt. A: Pure Appl. Opt., Vol. 9, 361-365, 2007.
doi:10.1088/1464-4258/9/9/S13
11. Zhou, J. F., Th. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, Appl. Phys. Lett., Vol. 88, 221103, 2006.
doi:10.1063/1.2208264
12. Holloway, C. L., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propgat., Vol. 51, No. 10, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563
13. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126
14. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
doi:10.1103/PhysRevB.77.045104
15. Popa, B. I. and S. A. Cummer, "Compact dielectric particles as a building block for low-loss magnetic metamaterials," Phys. Rev. Lett., Vol. 100, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401
16. Peng, L., L. X. Ran, H. S. Chen, H. F. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2007.
doi:10.1103/PhysRevLett.98.157403
17. Lepetit, T. and E. Akmansoy, "Magnetism in high-contrast dielectric photonic crystals," Microwave Opt. Tech. Lett., Vol. 50, 909-911, 2008.
doi:10.1002/mop.23227
18. Jylha, L., I. Kolmakov, S. Maslovski, and S. Tretyakova, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, 043102, 2006.
doi:10.1063/1.2173309
19. Kajfez, D. and P. Guillon, , Noble Publishing Corporation, Georgia, 1998.
20. Chen, X. D., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials ," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608
21. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617
22. Koschny, T., P. Markos, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E, Vol. 68, 065602, 2003.
doi:10.1103/PhysRevE.68.065602