Vol. 17

Latest Volume
All Volumes
All Issues
2009-08-27

A Uapo-Based Model for Propagation Prediction in Microcellular Environments

By Gianluca Gennarelli and Giovanni Riccio
Progress In Electromagnetics Research B, Vol. 17, 101-116, 2009
doi:10.2528/PIERB09072305

Abstract

A propagation model is presented in this paper for predicting the field strength in microcellular environments. According to the Geometrical Theory of Diffraction, the total field at a given observation point is calculated by summing the Geometrical Optics contributions and the field diffracted by the edges of each structure. The diffraction contributions are here evaluated by means of a Uniform Asymptotic Physical Optics solution to the corresponding canonical problem. Such a solution, expressed in terms of the standard transition function of the Uniform Theory of Diffraction, has resulted to be able to compensate the Geometrical Optics discontinuities at the shadow boundaries. In this framework, the structures are treated as constituted by lossy dielectric materials assumed to be non penetrable. The effectiveness of the here proposed model has been tested in some typical scenarios by means of comparisons with the Finite Difference Time Domain method.

Citation


Gianluca Gennarelli and Giovanni Riccio, "A Uapo-Based Model for Propagation Prediction in Microcellular Environments," Progress In Electromagnetics Research B, Vol. 17, 101-116, 2009.
doi:10.2528/PIERB09072305
http://test.jpier.org/PIERB/pier.php?paper=09072305

References


    1. Tan, S. Y. and H. S. Tan, "UTD propagation model in an urban street scene for microcellular communications," IEEE Trans. Electromagnetic Compat., Vol. 35, 423-428, 1993.
    doi:10.1109/15.247854

    2. Erceg, V., A. J. Rustako, and R. S. Roman, "Diffraction around corners and its effect on the microcell coverage area in urban and suburban environments at 900 MHz, 2 GHz, and 6 GHz," IEEE Trans. Veh. Technol., Vol. 43, 762-766, 1994.
    doi:10.1109/25.312770

    3. Schuster, J. and R. Luebbers, "Hybrid SBR/GTD radio propagation model for site-specific predictions in an urban environment," 12th Ann. Rev. of Progress in Applied Computational Electromagnetics, Vol. 1, 84-92, Monterey, CA, 1996.

    4. Kanatas, A. G., I. D. Kountouris, G. B. Kostaras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, 185-193, 1997.
    doi:10.1109/25.554751

    5. Rizk, K., J. F. Wagen, and F. Gardiol, "Two-dimensional ray-tracing modeling for propagation prediction in microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, 508-518, 1997.
    doi:10.1109/25.580789

    6. Kanatas, A. G. and P. Constantinou, "A propagation prediction tool for urban mobile radio systems," IEEE Trans. Veh. Technol., Vol. 49, 1348-1355, 2000.
    doi:10.1109/25.875256

    7. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, 116-130, 1962.
    doi:10.1364/JOSA.52.000116

    8. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.
    doi:10.1109/PROC.1974.9651

    9. Luebbers, R. J., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Antennas Propagat., Vol. 32, 70-76, 1984.
    doi:10.1109/TAP.1984.1143189

    10. Bernardi, P., R. Cicchetti, C. Gennarelli, G. Pelosi, and G. Riccio, "A UAPO solution for the field diffracted by building corners in wireless radio environments," Antennas Wireless Propagat. Lett., Vol. 1, 169-172, 2002.
    doi:10.1109/LAWP.2002.807568

    11. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, 2000.

    12. Senior, T. B. A. and J. L. Volakis, "Approximate boundary conditions in electromagnetics," IEE Electromagnetic Waves Series, London, 1995.

    13. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    14. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, 1630-1639, 1996.
    doi:10.1109/8.546249